Scopoletin stimulates the secretion of insulin via a KATP channel-dependent pathway in INS-1 pancreatic β cells

Author:

Park Jae Eun1,Kim Seon Young1,Han Ji Sook1ORCID

Affiliation:

1. Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea

Abstract

Abstract Objectives In this study, we investigated whether scopoletin stimulated the secretion of insulin in pancreatic β cells as well as the underlying mechanism involved in this process. Methods We incubated the INS-1 pancreatic β cells with various concentrations of glucose (1.1, 5.6 or 16.7 mM) in the presence or absence of scopoletin. We then analysed the secretion of insulin in the cells treated with insulin secretion inhibitors or secretagogues. The intracellular influx of calcium induced by scopoletin was also analysed using the Fluo-2 AM dye. Key findings We found that scopoletin (1–20 µM) markedly induced the secretion of insulin in a glucose concentration-dependent manner compared with the control. At depolarizing concentrations of potassium chloride (KCl), scopoletin markedly enhanced the insulin secretion compared with the cells which were treated only with KCl. Moreover, the treatment with diazoxide-opening K+ATP channel and verapamil blocking Ca2+ channel significantly decreased the scopoletin-induced increase in insulin secretion. After the pre-treatment of cells with a Ca2+ fluorescent dye, treatment with 20 µM scopoletin resulted in a significant increase in the influx of intracellular Ca2+, exhibiting fluorescence changes in various spectra. Conclusions Scopoletin stimulates the secretion of insulin via a K+ATP channel-dependent pathway in the INS-1 pancreatic β cells.

Funder

Pusan National University

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3