Distinct metabonomic signatures of Polygoni Multiflori Radix Praeparata against glucolipid metabolic disorders

Author:

Yang Ya-Qin1ORCID,Meng Fan-Ying1,Liu Xin2,Zhang Mei1,Gu Wen1,Yan Hong-Li1,Yu Jie1,Yang Xing-Xin1

Affiliation:

1. College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China

2. Beijing Entry-Exit Inspection and Quarantine Bureau, Beijing, China

Abstract

Abstract Objectives Glucolipid metabolic disorders (GLMD) promote a series of major chronic diseases. Polygoni Multilori Radix Preparata (PMRP) has been widely acknowledged in the prevention and treatment of GLMD. We previously reported that water extract (WE) of PMRP and its major bioactive constituents such as polysaccharides (POL) and 2,3,5,4´-tetrahydroxy-stilbene-2-O-β-D-glucoside (TSG) could alleviate GLMD. The mitochondrial dysfunction is an important mechanism of GLMD, but the underlying mechanisms behind the regulation of mitochondria to alleviate GLMD by WE, POL from PMRP and TSG are still unknown. Methods In this study, we elucidated the effects of WE, POL, and TSG towards regulating the mitochondrial dysfunction and alleviating GLMD using mitochondrial metabonomics. A rat model of GLMD was established by high-sugar and high-fat (HS-HF) diet. Rats were intragastrically given WE, POL, and TSG for 12 weeks. The liver mitochondrial metabolites were analyzed by ultra-high-performance liquid chromatography/mass spectrometry followed by multivariate statistical analysis to identify the differential metabolites and metabolic pathways. Key findings The WE, POL, and TSG could significantly restore the level of endogenous metabolites in liver mitochondria toward normal status. In total, sixteen, seven, and fourteen differential metabolites were identified in the liver mitochondrial samples obtained from the WE, GOL, and TSG groups, respectively. These metabolites were found to be mainly involved in glycerol phospholipid, histidine, alanine, aspartic acid, glutamate metabolism, and arginine biosynthesis. Conclusions PMRP could improve the liver mitochondrial function by regulating the mitochondrial metabolic pathways to alleviate GLMD. Therefore, the application of PMRP might be a promising mitochondrial regulator/nutrient for alleviating GLMD-associated diseases and the mitochondrial metabonomics might provide insights into the evaluation of the efficacies and mechanisms of action of drugs.

Funder

National Natural Science Foundation of China

Application and Basis Research Project of Yunnan China

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3