Single-cell transcriptomes of kidneys in a 6-month-old boy with Denys-Drash syndrome reveal stromal cell heterogeneity in the tumor microenvironment

Author:

Li Tao1,Zhou Jiangfeng1,Wu Haiyan2,Gao Xiucheng3,Shen Qiyang4,Cheng Rui5,Zhang Mingshun6ORCID

Affiliation:

1. Department of Oncology Surgery, Children's Hospital of Nanjing Medical University , Nanjing , China

2. Department of Pathology, Children's Hospital of Nanjing Medical University , Nanjing , China

3. Department of Radiology, Children's Hospital of Nanjing Medical University , Nanjing , China

4. Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University , Nanjing , China

5. Department of Neonatal Medical Center, Children's Hospital of Nanjing Medical University , Nanjing , China

6. NHC Key Laboratory of antibody technique, Department of Immunology, Nanjing Medical University , Nanjing , China

Abstract

ABSTRACT Background Denys-Drash syndrome (DDS) is a rare disease characterized with pseudohermaphroditism, nephroblastoma (also known as Wilms tumor), and diffuse mesangial sclerosis. The therapy for DDS is largely supportive, i.e. surgery and chemotherapy for Wilms tumor and renal replacement therapy. Due to the limited understanding of the pathogenesis, precision therapy for DDS is yet to be explored. We sought to explore the cellular components and interactions in kidney tissues from an infant with DDS. Methods Whole-exome sequencing was performed to examine the mutations associated with DDS. Single-cell RNA sequencing (scRNA-seq) was performed to explore the heterogenicity of kidney tissue samples. Results A 6-month-old infant with bilateral Wilms tumors and genital ambiguity was diagnosed as having DDS. Whole exome sequencing revealed a novel de novo mutation (p.F185fs*118) in exon 1 of WT1. scRNA-seq was performed in tissue samples from bilateral Wilms tumors and the normal kidney from this infant. Fibroblasts, myocytes, epithelial cells, endothelial cells, and mononuclear phagocytes (MPs) ranked at the top of the 31 135 total cells. Fibroblasts and myocytes were dominant in the Wilms tumor samples. In contrast, most epithelial cells and endothelial cells were found in normal kidney tissues. CD44 and TUBA1A were significantly changed in myocyte subclusters, which may contribute to chemotherapy drug resistance. Macrophages intensively interacted with cancerous cells, including fibroblasts, epithelial cells, and myocytes. Conclusions A novel mutation (p.F185fs*118) in exon 1 of WT1 was identified in an infant with DDS. scRNA-Seq revealed the heterogenicity of cellular components in Wilms tumors and kidney tissues, shedding light on the pathogenesis of DDS.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Transplantation,Nephrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3