Compositions and Classification of Fractionated Boninite Series Melts from the Izu–Bonin–Mariana Arc: A Machine Learning Approach

Author:

Valetich Matthew J1ORCID,Le Losq Charles12,Arculus Richard J1,Umino Susumu3,Mavrogenes John1

Affiliation:

1. Research School of Earth Sciences, The Australian National University, Canberra, ACT 2601, Australia

2. Institut de Physique du Globe de Paris, Université de Paris, 75005 Paris, France

3. Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa 920-1192, Japan

Abstract

Abstract Much of the boninite magmatism in the Izu–Bonin–Mariana arc is preserved as evolved boninite series compositions wherein extensive fractional crystallization of pyroxene and spinel have obscured the diagnostic geochemical indicators of boninite parentage, such as high Mg and low Ti at intermediate silica contents. As a result, the usual geochemical discriminants used for the classification of the broad range of parental boninites are inapplicable to such highly fractionated melts. These issues are compounded by the mixing of demonstrably different whole-rock and glass analyses in classification schemes and petrological interpretations based thereon. Whole-rock compositions are compromised by entrainment of variable proportions of crystalline phases resulting in inconsistent differences from corresponding in situ glass analyses, which arguably better reflect prior melt compositions. To circumvent such issues, we herein present a robust method for the classification of highly fractionated boninite series glasses. This new classification leverages the analysis of trace elements, which are much more sensitive to evolutionary processes than major elements, and benefits from the use of unsupervised machine learning as a classification tool. The results show that the most fractionated boninite series melts preserve geochemical indicators of their parentage, and highlight the pitfalls of interpreting whole-rock and glass analyses interchangeably.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3