Investigating the Influence of Crustal Contamination on the Stillwater Complex, Montana Using Sr, Nd, and Pb Isotopes

Author:

Benson Erin K1ORCID,Coleman Drew S2,Boudreau Alan E1

Affiliation:

1. Duke University Division of Earth and Climate Science, , 9 Circuit Drive, Durham, NC 27708, USA

2. University of North Carolina at Chapel Hill Department of Earth, Marine, and Environmental Sciences, , 104 South Road, Chapel Hill, NC 27599, USA

Abstract

Abstract The presence of pegmatoid bodies in the Stillwater Complex is poorly understood, but they have been suggested to have resulted from the presence of fluids in the complex. To better understand the origin of the pegmatoids and to trace the possible influence of country-rock-derived fluid in the Stillwater Complex, bulk rock Rb-Sr, Sm-Nd, and Pb-Pb isotopes for samples from the Archean Stillwater Complex and its metamorphic aureole are reported. Pegmatoid bodies are compared to spatially associated host rock and the underlying hornfels facies country rocks. Evidence of resetting of radiogenic isotopes during regional metamorphism at 1700 Ma is not observed, and the initial radiogenic isotopic ratios in Stillwater Complex rocks overlap those of the underlying hornfels. Despite the isotopic similarity of the country rock to the Stillwater Complex, the intrusion is modestly isotopically heterogeneous. In Stillwater samples, the average εNd,2710Ma = −1.1 ± 6.9, 206Pb/204Pb2710 Ma = 15.24 ± 2.26, and 87Sr/86Sr2710Ma = 0.703043 ± 0.002747 (1σ). The similarity between country rock and intrusive rock isotopic compositions at Stillwater contrasts with the data reported for the Bushveld Complex, South Africa, where the country rock is isotopically distinct from the intrusion. The variability in radiogenic isotope signatures in Stillwater rocks show a noisy but decreasing influence of country rock up through the Lower Banded series interpreted to reflect variable crustal contamination, in part from <1.0 wt % country rock fluids released during intrusion of the Stillwater Complex. The influence of crustal fluid contamination as compared to more traditional crustal assimilation models or simple magmatic heterogeneity suggests that hydrothermal fluids modified the isotopic compositions of more fluid-mobile elements and can explain aspects of isotopic heterogeneity in layered intrusions.

Funder

NSF

Publisher

Oxford University Press (OUP)

Reference127 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3