The Fate of Accessory Minerals and Key Trace Elements During Anatexis and Magma Extraction

Author:

Schwindinger Martin1ORCID,Weinberg Roberto F1,White Richard W2

Affiliation:

1. School of Earth, Atmosphere and Environment, Monash University, 9 Rainforest Walk, Clayton, Victoria 3800, Australia

2. School of Earth and Environmental Sciences, University of St Andrews, KY16 9AL, Scotland, UK

Abstract

Abstract Granite genesis and crustal evolution are closely associated with partial melting in the lower or middle crust and extraction of granite magmas to upper crustal levels. This is generally thought to be the leading mechanism by which the upper continental crust became enriched in incompatible components such as the heat-producing elements U and Th through time. However, field evidence from anatectic terrains, the source rocks of granite magmas, raises doubt about the efficiency of this process. Leucosomes and associated leucogranites, representative of melts in such terrains, are often depleted in U, Th and REE compared to their source and therefore unable to enrich the upper crust in these elements. This paper demonstrates using anatectic turbidites exposed on Kangaroo Island that accessory minerals, the main hosts of U, Th and REE, become preferentially concentrated in the melanosomes, effectively removing these elements from the melt. Whole rock geochemistry and detailed petrography suggests that (1) peraluminous melts dissolve only small fractions of monazite and xenotime, because efficient apatite dissolution saturates melt early in phosphorous; and (2) local melt–host reaction emerging from melt migration may cause melt to crystallize in the magma extraction channelways in or close to the magma source region. Crystallization causes oversaturation of the magma triggering crystallization and capture of accessory minerals in the growing biotite-rich selvedge rather than in the melt channel itself. Crystallization of accessory minerals away from the leucosome explains the apparent under-saturation of elements hosted by these accessory minerals in the leucosome and leucogranites. While intense reworking of thick piles of turbidites, common in accretionary orogens, reflect important processes of crustal formation, the fate of accessory phases and the key elements they control, such as the heat producing elements U and Th, are strongly dependent on the interaction between melt and surrounding solids during segregation and extraction.

Funder

Australian Reseach Council

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3