Affiliation:
1. School of Earth, Atmosphere and Environment, Monash University, 9 Rainforest Walk, Clayton, Victoria 3800, Australia
2. School of Earth and Environmental Sciences, University of St Andrews, KY16 9AL, Scotland, UK
Abstract
Abstract
Granite genesis and crustal evolution are closely associated with partial melting in the lower or middle crust and extraction of granite magmas to upper crustal levels. This is generally thought to be the leading mechanism by which the upper continental crust became enriched in incompatible components such as the heat-producing elements U and Th through time. However, field evidence from anatectic terrains, the source rocks of granite magmas, raises doubt about the efficiency of this process. Leucosomes and associated leucogranites, representative of melts in such terrains, are often depleted in U, Th and REE compared to their source and therefore unable to enrich the upper crust in these elements. This paper demonstrates using anatectic turbidites exposed on Kangaroo Island that accessory minerals, the main hosts of U, Th and REE, become preferentially concentrated in the melanosomes, effectively removing these elements from the melt. Whole rock geochemistry and detailed petrography suggests that (1) peraluminous melts dissolve only small fractions of monazite and xenotime, because efficient apatite dissolution saturates melt early in phosphorous; and (2) local melt–host reaction emerging from melt migration may cause melt to crystallize in the magma extraction channelways in or close to the magma source region. Crystallization causes oversaturation of the magma triggering crystallization and capture of accessory minerals in the growing biotite-rich selvedge rather than in the melt channel itself. Crystallization of accessory minerals away from the leucosome explains the apparent under-saturation of elements hosted by these accessory minerals in the leucosome and leucogranites. While intense reworking of thick piles of turbidites, common in accretionary orogens, reflect important processes of crustal formation, the fate of accessory phases and the key elements they control, such as the heat producing elements U and Th, are strongly dependent on the interaction between melt and surrounding solids during segregation and extraction.
Funder
Australian Reseach Council
Publisher
Oxford University Press (OUP)
Subject
Geochemistry and Petrology,Geophysics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献