Barometers Behaving Badly I: Assessing the Influence of Analytical and Experimental Uncertainty on Clinopyroxene Thermobarometry Calculations at Crustal Conditions

Author:

Wieser Penny E12ORCID,Kent Adam J R2,Till Christy B3,Donovan John4,Neave David A5ORCID,Blatter Dawnika L6,Krawczynski Michael J7

Affiliation:

1. McCone Hall Department of Earth and Planetary Science, , UC Berkeley, Berkeley, CA 94720, USA

2. Oregon State University College of Earth, Ocean and Atmospheric Sciences, , Corvallis, OR 97331, USA

3. Arizona State University School of Earth and Space Exploration, , Tempe, AZ 85281, USA

4. University of Oregon Department of Earth Sciences, , Eugene, OR 97403, USA

5. The University of Manchester Department of Earth and Environmental Sciences, , Oxford Road, Manchester M13 9PL, UK

6. California Volcano Observatory U.S. Geological Survey, , 345 Middlefeld Road, Menlo Park, CA 94025, USA

7. Washington University in St. Louis Department of Earth and Planetary Sciences, , 1 Brookings Drive, St. Louis, MO 63130, USA

Abstract

Abstract The composition of clinopyroxene and clinopyroxene-liquid (Cpx-Liq) pairs are frequently used to calculate crystallization/equilibration pressures in igneous systems. While canonical uncertainties are often assigned to calculated pressures based on fits to calibration or test datasets, the sources of these uncertainties (and thus ways to reduce them) have not been rigorously assessed. We show that considerable uncertainties in calculated pressures arise from analytical error associated with Electron Probe Microanalyser (EPMA) measurements of Cpx. Specifically, low X-ray counts during analysis of elements with concentrations <1 wt% resulting from insufficient count times and/or low beam currents yield highly imprecise measurements (1σ errors of 10–40% for Na2O). Low analytical precision propagates into the calculation of pressure-sensitive mineral components such as jadeite. Using Monte Carlo approaches, we demonstrate that elemental variation resulting from analytical precision alone generates pressures spanning ~4 kbar (~15 km) for a single Cpx and ~6 kbar for a single Cpx-Liq pair using popular barometry expressions. In addition, analytical uncertainties in mineral compositions produce highly correlated arrays between pressure and temperature that have been previously attributed to transcrustal magma storage. Before invoking such geological interpretations, a more mundane origin from analytical imprecision must be ruled out. Most importantly, low analytical precision does not just affect the application of barometers to natural systems; it has also affected characterization of Cpx in experimental products used to calibrate and test barometers. The impact of poor precision on each individual measurement is often magnified by the small number of measurements made within experimental charges, meaning that low analytical precision and true variability in mineral compositions have not been sufficiently mediated by averaging multiple EPMA analyses. We compile the number of Cpx measurements performed in N = 307 experiments used to calibrate existing barometers, and N = 490 new experiments, finding ~45% of experiment charges were characterized by ≤5 individual Cpx analyses. Insufficient characterization of the true composition of experimental phases likely accounts for the fact that all Cpx-based barometers exhibit large errors (± 3 kbar) when tested using global experimental datasets. We suggest specific changes to analytical and experimental protocols, such as increased count times and/or higher beam currents when measuring low concentration elements in relatively beam resistant Cpx in experiments and natural samples. We also advocate for increasing the number of analyses per experimental charge, resolving interlaboratory analytical offsets and improving data reporting. Implementing these changes is essential to produce a more robust dataset to calibrate and test the next generation of more precise and accurate Cpx-based barometers. In turn, this will enable more rigorous investigation of magma storage geometries in a variety of tectonic settings (e.g. distinguishing true transcrustal storage vs. storage in discrete reservoirs).

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3