Inverse Modeling to Constrain Composition of CO2-Rich Parental Melt of Kimberlite: Model Development and Application to the Majuagaa Dyke, Southern West Greenland.

Author:

Pilbeam L H12,Rasmussen T M23,Waight T E1ORCID,Nielsen T F D2

Affiliation:

1. University of Copenhagen Institute for Geography and Geology, , Denmark ; now Department of Geosciences and Natural Resource Management (Geology Section), Øster Voldgade 10, 1350 Copenhagen K, Denmark

2. Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, 1350 Copenhagen K, Denmark

3. University of Luleå Department of Civil, Environmental and Natural Resources Engineering, , Porsön, SE-97187 Luleå,  Sweden

Abstract

Abstract A model is developed to test the hypothesis that kimberlites can form by low-degree melting of asthenospheric mantle followed by entrainment and assimilation of lithospheric mantle. The developed model uses inversion calculations based upon rare earth and compatible trace elements. For kimberlites (s.s.), an equation describing mass balance between a melt of unknown composition and a contaminant end-member of xenocrystic/assimilated material from the lithospheric mantle is inverted. This allows calculation of the mass fraction of xenocrystic minerals from the lithospheric mantle (olivine, orthopyroxene, clinopyroxene, garnet, ilmenite) entrained in the kimberlitic magma, as well as the source mineralogy and melt degree in the source region. The composition of the parental melt prior to interaction with the lithosphere is not assumed a priori but is calculated by the model. The CO2, H2O, K2O and P2O5 contents of the source are estimated assuming batch melting and the inversion models. The range and coupling of the model parameters are found using a non-linear most-squares inversion procedure, and the model space is visualised using a Self-Organising Map approach. Our earlier work supporting assimilation of xenocrystic opx is, however, not a precondition but provides a post-processing constraint, as well as the selection of a more likely set of solutions from the Self-Organising Map. The calculation is applied to a data set from the Majuagaa kimberlite dyke (southern West Greenland) including added whole rock analyses for CO2 and H2O. Major variations in whole rock compositions are related to flow differentiation of olivine macrocrysts. The textures of opx, cpx, gt and ilm megacrysts show evidence for reaction with the transporting melt and physical erosion in the kimberlitic mush. Using the bulk rocks in our inversion scheme results in a silico-carbonatite parental melt with major element concentrations consistent with experimental melts. The ol, opx, and cpx mass fractions in the source are not well-resolved by this calculation, but the proportion of gt in the source is comparatively well defined at 15–22 wt% and cpx is constrained to less than 14 wt%. The source assemblage required is 36–80 wt% ol, 2–49 wt% opx, 0–6 wt% cpx, and 15–19 wt% gt. This suggests a peridotitic rather than an eclogitic source. The inversion model gives an overall mass fraction of xenocrystic material in the Majuagaa kimberlite magma of 41–51 wt% The mass fractions of the xenocryst phases are as follows: 71–85 wt% ol, 0–13 wt% opx, 5 ± 1 wt% gt, and 10–14 wt% ilm. There is less than 3 wt% cpx in the xenocrystic and assimilated assemblage. These results agree with petrographic observations. Processing the model results using the Self-Organising Map clearly displays the extent and coupling within the statistically acceptable region of the model space and leads us to a preferred model of 49 wt% xenocrysts with a xenocryst assemblage of 71–76 wt% ol, 8–13 wt% opx, 4 wt% gt and 12 wt% ilm. A source with a REE pattern similar to that of primitive mantle is sufficient to form the parental melt and consistent with generation of the initial kimberlite melt in the convecting mantle. Calculated CO2 and H2O concentrations in the source of the Majuagaa kimberlite of 230–860 μg/g and 223–741 μg/g, respectively, are within the range of independent convecting mantle estimates. This is equivalent to <0.17 wt% magnesite and the H2O budget of the mantle source can be accommodated via storage in nominally anhydrous silicate phases. When applied to Majuagaa kimberlite, the inversions are consistent with a conceptually simple model of kimberlite formation: (1) low degree melting in carbonated asthenospheric peridotite, (2) melt extraction and concentration, and (3) entrainment and reaction with lithospheric mantle material.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference189 articles.

1. Polymineralic inclusions in kimberlite-hosted megacrysts: implications for kimberlite melt evolution;Abersteiner;Lithos,2019

2. Olivine in kimberlites: magma evolution from deep mantle to eruption;Abersteiner;Journal of Petrology,2022

3. Experimentally determined partition coefficients for minor and trace elements in peridotite minerals and carbonatitic melt, and their relevance to naturalcarbonatites;Adam;European Journal of Mineralogy,2001

4. Channeling instability of upwelling melt in the mantle;Aharonov;Journal of Geophysical Research,1995

5. Inversion of the batch melting equations and the trace element pattern of the mantle;Albarède;Journal of Geophysical Research,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3