The Orestes Melt Zone, McMurdo Dry Valleys, Antarctica: Spatially Distributed Melting Regimes in a Contact Melt Zone, with Implications for the Formation of Rapakivi and Albite Granites

Author:

Currier R M1,Flood T P2

Affiliation:

1. Department of Geosciences, University of West Georgia, Carrollton, GA 30118, USA

2. Department of Geology, St Norbert College, De Pere, WI 54115, USA

Abstract

Abstract The Orestes Melt Zone (OMZ) is a massive contact melt zone (∼20 m thick by several kilometers long), located in the McMurdo Dry Valleys of Antarctica. The OMZ formed at shallow crustal depths by melting of the A-type Orestes Granite owing to intrusion of the underlying, doleritic Basement Sill. The OMZ can be divided broadly into two melting facies. The upper melting facies is distal from the contact and formed by melting at low temperature and water-saturated, or near water-saturated, conditions. The lower melting facies is proximal to the contact and formed by melting at high temperature and water-undersaturated conditions. Separate melting reactions occurred in both of the melting facies, resulting in distinct textures and melt compositions. Melting in the distal facies generated melts with compositions that plot near a predicted eutectic composition. Melting in the proximal facies was accomplished in part by replacement reactions in restitic feldspars. These reactions resulted in the development of plagioclase mantles on both restitic plagioclase and K-feldspar, and melt compositions that diverged from predicted minimum melt along an unexpected path, towards enrichment in orthoclase component. Thermal modeling indicates that this melt zone was active for a minimum of ∼150 years, with a contact temperature of ∼900 °C. Upon cooling, recrystallization generated ocellar textures around restitic quartz, as well as faceted albite as a late-stage product. Observations of the OMZ, combined with thermal modeling, provide new insights into the origin of rapakivi and albite granites. This study has implications for the origin of these two associated granite types in other geological settings.

Funder

National Science Foundation

University of Wisconsin Green Bay

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3