Various Ages of Recycled Material in the Source of Cenozoic Basalts in SE China: Implications for the Role of the Hainan Plume

Author:

Li Yan-Qing12,Kitagawa Hiroshi1ORCID,Nakamura Eizo1,Ma Changqian3,Hu Xiangyun2,Kobayashi Katsura1,Sakaguchi Chie1

Affiliation:

1. Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University at Misasa, 682-0193, Misasa, Tottori, Japan

2. Institute of Geophysics & Geomatics, China University of Geosciences, Wuhan 430074, China

3. State Key Laboratory of Geological Process and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China

Abstract

Abstract Subduction processes introduce crustal materials into the mantle, and mantle plumes return them to the surface. However, when and how the subducted materials were recorded in the plume-related basalts remains unclear. Here we investigate geochronology, bulk-rock composition, and Sr–Nd–Pb isotopes of Cenozoic basalts from Southeast China, occurring near the west Pacific subduction zone and the seismically detected Hainan plume. Volcanism beginning in the late Oligocene in the continental margin of SE China consistently becomes younger landward. Together with a compilation of published results on the synchronous basalts from the South China Sea seamounts and the Indochina peninsula, the volcanoes close to the Pacific subduction zone exhibit more radiogenic Pb and Sr isotopes associated with less radiogenic Nd isotopes compared with those of the inland volcanoes. Such spatiotemporal variations in radiogenic isotopes imply oceanic crusts of different ages in the source, each corresponding to a different geographical volcanic belt. Major-element features such as low CaO, high TiO2 and high Fe/Mn ratios imply that pyroxenite/eclogite could serve as a source lithology of the SE China basalts. Specific trace-element signatures reveal the important roles of recycled oceanic crust along with surface sediment, which was inconsistently dehydrated during subduction. A geologically, geochemically, and geophysically plausible scenario is proposed to illustrate the time–space–source correlation of the late Cenozoic basaltic lavas in SE Asia. The Hainan plume delivered the ancient subducted crust (1·5 Ga) from the core–mantle boundary and, subsequently, the subducted Pacific plate crustal materials from the mantle transition zone to the shallow mantle as a result of mantle convection induced by continuous subduction of the Pacific plate. Such recycled materials of different ages contributed to the geographical compositional heterogeneities of the late Cenozoic basaltic lavas in SE Asia.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3