Platinum-Group Element Geochemistry and Magma Evolution of the Mount Hagen (Papua New Guinea) Magmatic System

Author:

Misztela M A1,Campbell I H1,Arculus R J1

Affiliation:

1. Research School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia

Abstract

Abstract Mount Hagen is a mid-Pleistocene stratovolcano located in the Papua New Guinea Highlands. It was selected for this study because of (1) its close location to several giant Cu–Au porphyry deposits in the region; (2) its high-K calc-alkaline character (absarokite–shoshonite) and (3) its wide compositional range (2 to 12 wt % MgO). Whole-rock geochemistry, petrography and QEMSCAN observations are consistent with fractional crystallisation of the evolving magma being controlled by the phases now represented by the megacrysts in the lavas: olivine and clinopyroxene at high MgO and hornblende and plagioclase at low MgO. However, the role of plagioclase is enigmatic. Although it is an abundant megacryst phase in the low-MgO samples, plagioclase has little or no influence on fractional crystallisation, suggesting that it may be an antecryst. The appearance of plagioclase megacrysts does not slow the rate of increase in Al2O3 or Sr with decreasing sample MgO and the low-MgO samples do not have Eu anomalies. At ~5.5 wt % MgO, there are significant changes in the system that are inconsistent with simple fractional crystallisation. These changes include hornblende and plagioclase replacing olivine and clinopyroxene as the principal megacryst phases, a sharp rise in platinum-group elements (PGE) concentrations, the brief reappearance of high Fo olivine megacrysts and reversed zoning in the plagioclase megacrysts. These changes are interpreted to have resulted from a new pulse of magma entering the system, with higher water, MgO, SiO2 and PGE concentrations than the original parent magma. Scatter in the PGE data is attributed to the presence of micronuggets in all samples, including the most mafic samples. We conclude that the magma system became sulphide saturated during an early stage in its fractionation history, probably before leaving the crust to deep crustal magma chamber, and then became undersaturated as a consequence of decreasing pressure as magma ascended into a mid-crustal magma chamber. The early saturation episode had a pronounced influence on PGE concentration but had little affect Cu and Au, due to their lower partition coefficient into sulphides. The magma became sulphide saturated again in the crustal magma chamber at ~8.5 wt % MgO, this time affecting all chalcophile elements. Given the early episodes of sulphide saturation, depletion in Au in the Mount Hagen magma system and the absence of a known porphyry system, it is unlikely that Mount Hagen produced economic porphyry mineralisation.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3