The Origin of Ultramafic Complexes with Melilitolites and Carbonatites: A Petrological Comparison of the Gardiner (E Greenland) and Kovdor (Russia) Intrusions

Author:

Gudelius Dominik123,Marks Michael W3,Markl Gregor3,Nielsen Troels F D4,Kolb Jochen12,Walter Benjamin12

Affiliation:

1. Chair of Geochemistry and Economic Geology, Institute for Applied Geosciences Karlsruhe Institute of Technology, , Adenauerring 20b, 76131 Karlsruhe, Germany

2. Laboratory for Environmental and Raw Materials Analysis (LERA) , Adenauerring 20b, 76131 Karlsruhe, Germany

3. Eberhard Karls University , Institute of Geosciences, Schnarrenbergstrasse 94-96, 72076 Tübingen, Germany

4. Mapping and Mineral Resources Geological Survey of Denmark and Greenland, , Øster Voldgade 10, DK-1350, Copenhagen K, Denmark

Abstract

Abstract In many alkaline complexes, large amounts of ultramafic rocks occur together with carbonatites, melilitolites and other alkaline silicate rocks. There is an ongoing debate if and how these contrasting lithologies were formed by differentiation of a common, mantle-derived silicate magma or rather by metasomatic processes between carbonatite and country rocks. In order to find petrological evidence for one or the other, two key examples, the Gardiner (E Greenland) and Kovdor (Russia) complexes are compared in this study. Despite their similar tectonic setting and succession of rock types, they show significant differences in the texture and mineral composition of ultramafic rocks. Ultramafic rocks from Kovdor include calcite- and biotite-rich dunites and pyroxenites without typical cumulate textures. They consist of Ni-poor forsterite, Cr-poor diopside and Ni-Cr-poor spinel and are possibly metasomatic reaction products between mantle-derived carbonatite melts and silicic host rocks. Similar ultramafic rocks are associated with carbonatites e. g. at Palabora (South Africa), Afrikanda (Russia), and Salitre (Brazil). In contrast, the ultramafic rocks from Gardiner show well-preserved cumulate textures and consist of Ni-rich forsterite, Cr-rich diopside as well as Cr-Ni-Ti-rich spinel and also contain F-Cl-rich apatite. They record an increase in aSiO2 from dunite to pyroxenite at similar fO2 (ΔFMQ ~ +1.2, with FMQ = fayalite-magnetite-quartz buffer), indicating that these rocks represent cumulates of an evolving, moderately oxidized mafic melt derived from a Ti-rich mantle source, similar to other rocks of the North Atlantic igneous province. In contrast to systems like Kovdor where carbonatite metasomatism is likely dominant, Ti-rich parental silicate magmas can abundantly crystallize Ti phases, as recorded by massive perovskite cumulates in Gardiner melilitolites. This can effectively scavenge HFSE from the magmatic system early in its evolution and likely explains HFSE-barren carbonatites at Gardiner, while those from Kovdor are highly HFSE-enriched. In summary, the results of our study provide strong textural and mineral chemical evidence that ultramafic rocks in alkaline complexes can be of both cumulate and metasomatic origin; the specific type has an important bearing on their HFSE enrichment and on the types of ores present in such complexes.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3