Chemical Disequilibria, Lithospheric Thickness, and the Source of Ocean Island Basalts

Author:

Grose Christopher J1,Afonso Juan C23

Affiliation:

1. California Institute of Technology, Seismological Laboratory, 1200 E. California Blvd., MS 252-21, So. Mudd Building, Rm 266, Pasadena, CA, USA

2. Department of Earth and Planetary Sciences, CCFS/GEMOC, Macquarie University, North Ryde, Sydney, NSW, Australia

3. Centre for Earth Evolution and Dynamics, Department of Geosciences, University of Oslo, Blindern, NO Oslo, Norway

Abstract

Abstract We examine REE (Rare-Earth Element) and isotopic (Sr–Hf–Nd–Pb) signatures in OIB (Ocean Island Basalts) as a function of lithospheric thickness and show that the data can be divided into thin- (<12 Ma) and thick-plate (>12 Ma) sub-sets. Comparison to geophysically constrained thermal plate models indicates that the demarcation age (∼12 Ma) corresponds to a lithospheric thickness of about 50 km. Thick-plate OIB show incompatible element and isotopic enrichments, whereas thin-plate lavas show MORB-like or slightly enriched values. We argue that enriched signatures in thick-plate OIB originate from low-degree melting at depths below the dry solidus, while depleted signatures in MORB and thin-plate OIB are indicative of higher-degree melting. We tested quantitative explanations of REE systematics using melting models for homogeneous fertile peridotite. Using experimental partition coefficients for major upper mantle minerals, our equilibrium melting models are not able to explain the data. However, using a new grain-scale disequilibrium melting model for the same homogeneous lithology the data can be explained. Disequilibrium models are able to explain the data by reducing the amount of incompatible element partitioning into low degree melts. To explore new levels of detail in disequilibrium phenomena, we employ the Monte-Carlo Potts model to characterize the textural evolution of a microstructure undergoing coarsening and phase transformation processes simultaneous with the diffusive partitioning of trace elements among solid phases and melt in decompressing mantle. We further employ inverse methods to study the thermochemical properties required for models to explain the OIB data. Both data and theory show that OIB erupted on spreading ridges contain signatures close to MORB values, although E-MORB provides the best fit. This indicates that MORB and OIB are produced by compositionally indistinguishable sources, although the isotopic data indicate that the source is heterogeneous. Also, a posteriori distributions are found for the temperature of the thermomechanical lithosphere-asthenosphere boundary (TLAB), the temperature in the source of OIB (Tp, oib) and the extent of equilibrium during melting (i.e. grain size). TLAB has been constrained to 1200–1300°C and Tp, oib is constrained to be <1400°C. However, we consider the constraints on Tp, oib as a description of all OIB to be provisional, because it is a statistical inference from the global dataset. Exceptional islands or island groups may exist, such as the classical ‘hotspots’ (Hawaii, Reunion, etc) and these islands may originate from hot sources. On the other hand, by the same statistical arguments their origins may be anomalously hydrated or enriched instead. Mean grain size in the source of OIB is about 1–5 mm, although this is also provisional due to a strong dependence on knowledge of partition coefficients, ascent rate and the melting function. We also perform an inversion in which partition coefficients were allowed to vary from their experimental values. In these inversions TLAB and Tp, oib are unchanged, but realizations close to equilibrium can be found when partition coefficients differ substantially from their experimental values. We also investigated bulk compositions in the source of OIB constrained by our inverse models. Corrections for crystallization effects provided ambiguous confirmations of previously proposed mantle compositions, with depleted mantle providing the poorest fits. We did not include isotopes in our models, but we briefly evaluate the lithospheric thickness effect on isotopes. Although REE data do not require a lithologically heterogeneous source, isotopes indicate that a minor enriched component disproportionately contributes to thick-plate OIB, but is diluted by high-degree melting in the generation of thin-plate OIB and MORB.

Funder

National Science Foundation

Australian Research Council Discovery

Research Council of Norway

Centers of Excellence funding scheme

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3