Tracking Metamorphic Dehydration Reactions in Real Time with Transmission Small- and Wide-Angle Synchrotron X-ray Scattering: the Case of Gypsum Dehydration

Author:

Schrank C E1ORCID,Gioseffi K1,Blach T2,Gaede O1,Hawley A3,Milsch H4,Regenauer-Lieb K2,Radlinski A P5

Affiliation:

1. School of Earth and Atmospheric Sciences, Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia

2. UNSW School of Minerals and Energy Resources Engineering, Room 159, Old Main Building (K15) Gate 14, Barker St, Sydney, NSW, 2052, Australia

3. ANSTO - Melbourne, 800 Blackburn Rd, Clayton, VIC, 3168, Australia

4. GFZ Potsdam, Telegrafenberg, Building A69, Room 202, 14473 Potsdam, Germany

5. Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland

Abstract

Abstract We present a review of a unique non-destructive method for the real-time monitoring of phase transformations and nano-pore evolution in dehydrating rocks: transmission small- and wide-angle synchrotron X-ray scattering (SAXS/WAXS). It is shown how SAXS/WAXS can be applied to investigating rock samples dehydrated in a purpose-built loading cell that allows the coeval application of high temperature, axial confinement, and fluid pressure or flow to the specimen. Because synchrotron sources deliver extremely bright monochromatic X-rays across a wide energy spectrum, they enable the in situ examination of confined rock samples with thicknesses of ≤ 1 mm at a time resolution of order seconds. Hence, fast kinetics with reaction completion times of about hundreds of seconds can be tracked. With beam sizes of order tens to hundreds of micrometres, it is possible to monitor multiple interrogation points in a sample with a lateral extent of a few centimetres, thus resolving potential lateral spatial effects during dehydration and enlarging sample statistics significantly. Therefore, the SAXS/WAXS method offers the opportunity to acquire data on a striking range of length scales: for rock samples with thicknesses of ≤ 10-3 m and widths of 10-2 m, a lateral interrogation-point spacing of ≥ 10-5 m can be achieved. Within each irradiated interrogation-point volume, information concerning pores with sizes between 10-9 and 10-7 m and the crystal lattice on the scale of 10-10 m is acquired in real time. This article presents a summary of the physical principles underpinning transmission X-ray scattering with the aim of providing a guide for the design and interpretation of time-resolved SAXS/WAXS experiments. It is elucidated (1) when and how SAXS data can be used to analyse total porosity, internal surface area, and pore-size distributions in rocks on length scales from ∼1 to 300 nm; (2) how WAXS can be employed to track lattice transformations in situ; and (3) which limitations and complicating factors should be considered during experimental design, data analysis, and interpretation. To illustrate the key capabilities of the SAXS/WAXS method, we present a series of dehydration experiments on a well-studied natural gypsum rock: Volterra alabaster. Our results demonstrate that SAXS/WAXS is excellently suited for the in situ tracking of dehydration kinetics and the associated evolution of nano-pores. The phase transformation from gypsum to bassanite is correlated directly with nano-void growth on length scales between 1 and 11 nm for the first time. A comparison of the SAXS/WAXS kinetic results with literature data emphasises the need for future dehydration experiments on rock specimens because of the impact of rock fabric and the generally heterogeneous and transient nature of dehydration reactions in nature. It is anticipated that the SAXS/WAXS method combined with in situ loading cells will constitute an invaluable tool in the ongoing quest for understanding dehydration and other mineral replacement reactions in rocks quantitatively.

Funder

Central Analytical Research Facility (CARF) at the Queensland University of Technology

eResearch Office, Queensland University of Technology, Brisbane, Australia

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference182 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3