From Burial to Exhumation: Emplacement and Metamorphism of Mafic Eclogitic Terranes Constrained Through Multimethod Petrochronology, Case Study from the Lévézou Massif (French Massif Central, Variscan Belt)

Author:

Lotout C12,Poujol M1,Pitra P13,Anczkiewicz R4,Van Den Driessche J1

Affiliation:

1. Univ Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000 Rennes, France

2. Laboratoire de Planétologie et Géodynamique, UMR 6112, CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans CEDEX 9, France

3. Česká geologická služba, Klárov 3, CZ-118 21 Praha 1, Česká republika

4. Institute of Geological Sciences, Polish Academy of Sciences, Kraków Research Center, Senacka 1, PL 31-002, Kraków, Poland

Abstract

Abstract Linking mineral growth and time is required to unravel the evolution of metamorphic rocks. However, dating early metamorphic stages is a challenge due to subsequent retrograde overprinting. A fresh eclogite and a former eclogite retrogressed under amphibolite facies from the southern French Massif Central (Lévézou massif, Variscan belt) were investigated with a large panel of geochronometers (U–Pb in zircon, rutile and apatite, Lu–Hf and Sm–Nd in garnet) in a petrological context tightly constrained by petrographic observations, trace element analyses and phase equilibrium modelling. Both samples recorded similar HP conditions at 18–23 kbar and 680–800°C, whereas the retrogressed eclogite later equilibrated at 8–9·5 kbar and c.600°C. In the retrogressed sample, most of the zircon grains are characterized by negative Eu anomalies and HREE enrichment, and yield an Ordovician U–Pb date of 472·3 ± 1·7 Ma, interpreted as the emplacement age of the mafic protolith. In agreement with other data available for the Variscan belt, and based on zircon trace element record and whole-rock geochemistry, this age is considered to represent the magmatism associated with the extreme thinning of the continental margins during the Ordovician. In the same sample, a few zircon rims show a weaker HREE enrichment and yield a date of 378 ± 5·7 Ma, interpreted as a prograde pre-eclogitic age. Lu–Hf garnet dating from both samples yields identical dates of 357 ± 13 Ma and 358·0 ± 1·5 Ma inferred to approximate the age of the high-pressure metamorphic peak. Fresh and retrogressed samples yield respectively 350·4 ± 7·7 Ma and 352 ± 20 Ma dates for Sm–Nd garnet dating, and 367·8 ± 9·1 Ma and 354·9 ± 9·5 Ma for U–Pb rutile dating. Apatite grains from the retrogressed sample give a mean age of 351·8 ± 2·8 Ma. The similarity between all recorded ages from distinct chronometers and radiometric methods (U–Pb, rutile, apatite; Lu–Hf, garnet; Sm–Nd, garnet) combined with P–T estimations from high-pressure metamorphic rocks equilibrated under different conditions testifies to very fast processes that occurred during the Variscan orogeny, highlighting a major decompression of 15–8·5 kbar in less than 7 Myr, and suggesting mean exhumation rates in excess of 6·3 mm/yr.

Funder

European Union

OSUR

French Ministry of Higher Education and Research

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3