Generation of Calc-Alkaline Magmas during Crystallization at High Oxygen Fugacity: An Experimental and Petrologic Study of Tephras from Buldir Volcano, Western Aleutian Arc, Alaska, USA

Author:

Waters L E1ORCID,Cottrell E2,Coombs M L3ORCID,Kelley K A4

Affiliation:

1. New Mexico Institute of Mining and Technology, Earth and Environmental Science, Socorro, NM, USA

2. Mineral Sciences, National Museum of Natural History Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC 20560, USA

3. Alaska Volcano Observatory, U.S. Geological Survey (USGS), 4230 University Drive, Anchorage, AK 99508, USA

4. Graduate School of Oceanography, University of Rhode Island, Narragansett Bay Campus, 215 S Ferry Rd, Narragansett, RI 02882, USA

Abstract

Abstract Despite agreement that calc-alkaline volcanism occurs at subduction zones and is responsible for the genesis of continental landmasses, there is no consensus on the source of the Fe-depleted signature hallmark to calc-alkaline volcanism. In this study, we utilize mafic tephras collected from Buldir Volcano to address the genesis of strongly calc-alkaline volcanic rocks (those with a low Tholeiitic Index; ≤0·7) in a segment of the western Aleutian Arc to determine if the eruptions are plausibly part of a liquid line of descent, if they are mixtures of crustal melts and parental magmas, or if they are mixtures of melts of the mantle and the subducting slab. We conducted a series of H2O-saturated phase equilibrium experiments (1175–1000°C; 100 MPa) in a rapid-quench cold-seal (MHC) apparatus on the most primitive natural lava from Buldir (9·34 wt % MgO) at oxidizing conditions near the Re–ReO2 buffer. We confirmed that all experiments equilibrated 0·3 ± 0·23 log units above the Re–ReO2 buffer (ΔQFM ∼ +2·8) using X-ray Absorption Near Edge Structure (XANES) spectroscopy. Chromite is the liquidus phase, followed by olivine, then plagioclase, then clinopyroxene, and finally hornblende. Once clinopyroxene saturates, spinel composition shifts to magnetite. We compared our experimental results to the major element geochemistry and petrology of six tephras (51·9–54·8 wt % SiO2) from Buldir collected during the 2015 field season of the GeoPRISMS shared platform. Tephras contain olivine + plagioclase + clinopyroxene + spinel ± hornblende; plagioclase comprises most of the crystalline volume, followed by either olivine or hornblende. Spinel is ubiquitous; with Cr-rich spinel inclusions in olivine and hornblende, and magnetite in the groundmass. Variations in phenocryst assemblages and compositions between samples can be attributed to differences in pre-eruptive temperatures, where hotter samples are devoid of hornblende, and contain Fo-rich olivine and plagioclase with lower An-contents, owing to the position of the mineral-in curves at fluid-saturated conditions. Experimental glasses match the depletion in FeOT observed in the tephra whole rock compositions. The continuous depletion in FeOT is attributable to saturation of spinel as a liquidus phase (initially as chromite) and continuous crystallization through the experimental series (changing to magnetite at colder temperatures). In contrast to the natural samples, the experiments show enrichment in TiO2 with decreasing MgO, suggesting that differentiation did not occur at 100 MPa on Buldir. The TiO2 depletion in volcanic rocks from Buldir can be accounted for if hornblende crystallization occurs close to the liquidus of a parental magma; a condition that is met at higher pressures and hydrous conditions. The emerging picture for Buldir Island is that (1) oxidizing conditions are required to drive the observed depletions in FeOT via crystallization of spinel, and (2) elevated H2O contents and high pressures are required to saturate hornblende close to the liquidus to reproduce the entire suite of major elements. Our study provides a mechanism to generate the calc-alkaline trends observed at Buldir without requiring mixing of slab and mantle melts. We conclude that calc-alkaline volcanic rocks with extremely low Tholeiitic Indices (0·7), like those from Buldir, cannot be generated in absence of high oxygen fugacity, even at high pressure and/or elevated water pressures.

Funder

NSF EAR GeoPRISMS

Smithsonian Scholarly Studies Grant

National Science Foundation—Earth Sciences

Department of Energy- GeoSciences

DOE Office of Science by Argonne National Laboratory

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference108 articles.

1. Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids;Alonso-Perez;Contributions to Mineralogy and Petrology,2009

2. Redox in Magmas: Comment on a Recent Treatment of the Kaiserstuhl Volcanics (Braunger et al., Journal of Petrology, 59, 1731–1762, 2018);Anenburg;Journal of Petrology,2019

3. Compositions of anhydrous and hydrous melts coexisting with plagioclase, augite, and olivine or low-Ca pyroxene from 1 atm to 8 kbar; application to the Aleutian volcanic center of Atka;Baker;American Mineralogist,1987

4. An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200 MPa;Berndt;Journal of Petrology,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3