UHT Metamorphism Peaking Above 1100 °C with Slow Cooling: Insights from Pelitic Granulites in the Jining Complex, North China Craton

Author:

Wang Bin1,Wei Chun-Jing1,Tian Wei1,Fu Bin2

Affiliation:

1. MOE Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China

2. Research School of Earth Sciences, The Australian National University, Canberra, ACT 2601, Australia

Abstract

Abstract The peak temperature and duration of ultrahigh-temperature (UHT) metamorphism are critical to identify and understand its tectonic environment. The UHT metamorphism of the Jining complex in the Khondalite Belt, North China Craton is controversial on the peak temperature, time and tectonic setting. A representative sapphirine-bearing granulite sample is selected from the classic Tianpishan outcrop for addressing the metamorphic evolution and timing. The rock is markedly heterogeneous on centimetre scale and can be divided into melanocratic domains rich in sillimanite (MD-s) or rich in orthopyroxene (MD-o), and leucocratic domains (LD). On the basis of detailed petrographic analyses and phase equilibria modelling using THERMOCALC, all three types of domains record peak temperatures of 1120–1140 °C and a series of post-peak cooling stages at 0·8–0·9 GPa to the fluid-absent solidus (∼890 °C), followed by sub-solidus decompression. The peak temperature for MD-s is constrained by the coexistence of sillimanite-I + sapphirine + spinel + quartz, where sillimanite-I contains densely exsolved aciculae of hematite, yielding reintegrated Fe2O3 contents up to 2·1–2·3 wt %. The post-peak cooling evolution involves the sequential appearance of K-feldspar, sillimanite-II + garnet, orthopyroxene and biotite, where sillimanite-II is exsolution-free and contains variable Fe2O3 contents of 1·3–1·8 wt %. The peak temperature for MD-o is constrained by the sapphirine + orthopyroxene assemblage, where orthopyroxene has a maximum AlIV of 0·22 (Al2O3 = 9·5 wt %) in the core. The cooling evolution involves the sequential appearance of K-feldspar, garnet and biotite, and the decreasing AlIV (0·22→0·17) from core to rim in orthopyroxene. The peak temperature for LD is constrained by the inferred K-feldspar-absent assemblage and the maximum anorthite content of 0·11 in K-feldspar. The cooling evolution involves the crystallization of segregated melts, exsolution of supra-solvus ternary feldspars and growth of biotite. The Al in orthopyroxene, Fe2O3 in sillimanite and anorthite in K-feldspar are good indicators for constraining extreme UHT conditions although they depend differently on bulk-rock compositions. In-situ SHRIMP U–Pb dating of metamorphic zircon indicates that the UHT metamorphism may have occurred at >1·94 Ga and the cooling under UHT conditions lasted over 40 Ma. The extreme UHT metamorphism in the Jining complex is interpreted to be triggered by the advective heating of intraplate hyperthermal mafic magmas together with a plume-related hot mantle upwelling, following an orogenic crustal thickening event.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3