The Origin of Plagiogranites: Coupled SIMS O Isotope Ratios, U–Pb Dating and Trace Element Composition of Zircon from the Troodos Ophiolite, Cyprus

Author:

Morag Navot1,Golan Tzahi2,Katzir Yaron2,Coble Matthew A3,Kitajima Kouki4,Valley John W4

Affiliation:

1. Geological Survey of Israel, 32 Yesha’ayahu Leibowitz St, Jerusalem 9692100, Israel

2. Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, Be’er-Sheva 84105, Israel

3. Department of Geological Sciences, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA

4. WiscSIMS, Department of Geoscience, University of Wisconsin, 1215 W Dayton St, Madison, WI 53706, USA

Abstract

Abstract U–Pb ages, trace element content and oxygen isotope ratios of single zircons from five plagiogranite intrusions of the Troodos ophiolite were measured to determine their crystallization age and assess the importance of fractional crystallization versus crustal anatexis in their petrogenesis. The results indicate that oceanic magmatism in Troodos took place at 94·3 ± 0·5 Ma, about 3 Myr earlier than previously recognized. Later hydrothermal alteration has affected most of the Troodos plagiogranitic rocks, resulting in growth of new zircon and/or partial alteration of zircon domains, causing slightly younger apparent crystallization ages. The new age inferred for seafloor spreading and ocean crust accretion in Troodos nearly overlaps that of the Semail ophiolite in Oman (95–96 Ma), strengthening previous indications for simultaneous evolution of both ophiolites in similar tectonic settings. Average δ18O(Zrn) values in the Troodos plagiogranites range between 4·2 and 4·8 ‰. The lower values in this range are lower than those expected in equilibrium with mantle-derived melt (5·3 ± 0·6 ‰), indicating variable contribution from hydrothermally altered, deep-seated oceanic crust in most of the Troodos plagiogranite intrusions. The inferred substantial involvement of crustal component is consistent with the existence of a shallow axial magma chamber, typical of fast-spreading mid-ocean ridge settings, within the Troodos slow-spreading ridge environment. This apparent contradiction may be reconciled by episodically intense magmatism within an otherwise slow, magmatically deprived spreading axis.

Funder

Israel Science Foundation

US National Science Foundation

University of Wisconsin–Madison

NSF

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3