Elemental Distributions and Mineral Parageneses of the Skaergaard PGE–Au Mineralization: Consequences of Accumulation, Redistribution, and Equilibration in an Upward-Migrating Mush Zone

Author:

Nielsen T F D1,Rudashevsky N S2,Rudashevsky V N2,Weatherley S M1,Andersen J C Ø3

Affiliation:

1. Department of Petrology and Economic Geology, Geological Survey of Denmark and Greenland, Øster Voldgade 10, 1350 Copenhagen, Denmark

2. CNT Instruments LLC, Svetlanovskiy Avenue 75-41, St. Petersburg 195427, Russia

3. Camborne School of Mines, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Penryn, Cornwall TR10 9FE, UK

Abstract

AbstractThe Skaergaard PGE–Au mineralization, aka the Platinova Reef, is a syn-magmatic Platinum Group Element (PGE) and gold (Au) mineralization that formed after crystallization of ∼74% of the bulk melt of the intrusion. It is hosted in a more than 600 m deep and bowl-shaped succession of gabbroic macro-rhythmic layers in the upper 100 m of the Middle Zone. The precious metal mineralization comprises a series of concordant, but compositionally zoned, mineralization levels identified by distinct PGE, Au and Cu peaks. They formed due to local sulphide saturation in stratiform concentrations of interstitial and evolved mush melts in six MLs over > 2000 years. The PGE–Au mineralization is compared to a stack of gold-rimmed saucers of PGE-rich gabbro of upward decreasing size. Fundamentally different crystallization and mineralization scenarios have been proposed for the mineralization, including offset reef type models based on sulphide saturation in the melt from which the silicate host crystallized, and the here argued model which restricts the same processes to the melt of the inward migrating mush zone of the magma chamber. The latter is supported by: i) a 3 D summary of the parageneses of precious metal minerals and phases (> 4000 grains) from 32 samples across the mineralization; ii) a 3 D compilation of all bulk rock assay data; and iii) a principal component analysis (PCA) of PGE, Au, Cu, and selected major and trace elements. In the main PGE-mineralization level (Pd5 alias Pd-Zone) the precious metal mineral paragenesis varies across the intrusion with precious metal sulphides and Au-alloys at the W-margin to Precambrian basement, precious metal plumbide and Au- and Ag-alloys at the E-margin to flood basalts, and skaergaardite (PdCu) and intermetallic compounds and alloys of PGE–Au and Cu in the central parts of the mineralization. Precious metal parageneses are distinct for a given sector of the intrusion, i.e. drill core (local control), rather than for a given stratigraphic or temporal interval in the accumulated gabbros. The precious metal ‘grade times width’ number (average g/t x metres) for the mineralization at an upper and a lower cut off of 100 ppb PGE or Au increases from ∼20 to ∼45 g toward the centre of the mineralization due to ponding of precious metal bearing melt. A strong increase in (Pd+Pt+Au)/Cu and dominance of (PdCu) alloys in the lower and central parts of the mineralization demonstrate the partial dissolution of droplets of Cu-rich sulphide melt and fractionation of precious metal ratios. The precious metal parageneses, the distribution of precious metals in the mineralization, and the PCA support initial accumulation of precious metals in the melt of the mush in the floor, followed by equilibration, sulphide saturation, and reactions with residual and immiscible Fe-rich silicate melt in a series of macro-rhythmic layers in the stratified and upward migrating mush zone in the floor of the magma chamber. Syn-magmatic and upward redistribution of precious metals sets the Skaergaard PGE–Au Mineralization apart from conventional reef type and offset-reef type precious metal mineralizations, and characterize ‘Skaergaard type’ precious metal deposits.

Funder

Geological Survey of Denmark and Greenland

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference89 articles.

1. The statistical analysis of compositional data (with discussion);Aitchison;Journal of the Royal Statistical Society: Series B (Methodological),1982

2. Compositional Data Analysis: Where are we and where should we be heading?;Aitchison;Mathematical Geology,2005

3. Introduction to Geochemical Modeling

4. Postmagmatic sulfur loss in the Skaergaard Intrusion: implications for the formation of the Platinova Reef;Andersen;Lithos,2006

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3