Volatiles and Intraplate Magmatism: a Variable Role for Carbonated and Altered Oceanic Lithosphere in Ocean Island Basalt Formation

Author:

Kirstein Linda A1,Walowski Kristina J2,Jones Rosemary E3,Burgess Ray4,Fitton J Godfrey1,De Hoog Jan C M1,Savov Ivan P5,Kalnins Lara M1,

Affiliation:

1. University of Edinburgh, School of GeoSciences, Grant Institute School of GeoSciences, , Edinburgh EH9 3FE, UK

2. Western Washington University Department of Geology, , Bellingham WA 98225, USA

3. University of Oxford Department of Earth Sciences, , Oxford OX1 3AN, UK

4. University of Manchester Department of Earth and Environmental Sciences, , Manchester M13 9PL, UK

5. University of Leeds School of Earth and Environment, , Leeds LS2 9JT, UK

Abstract

Abstract Recycling of material at subduction zones has fundamental implications for melt composition and mantle rheology. Ocean island basalts (OIBs) sample parts of the mantle from variable depths that have been diversely affected by subduction zone processes and materials, including the subducted slab, metasomatising melts and fluids. Resultant geochemical differences are preserved at a variety of scales from melt inclusions to whole rocks, from individual islands to chains of islands. Here we examine a global dataset of ocean island basalt compositions with a view to understanding the connection between silica-saturation, olivine compositions, and halogens in glass and olivine-hosted melt inclusions to reveal information regarding the mantle sources of intraplate magmatism. We find that minor elements incorporated into olivine, although informative, cannot unambiguously discriminate between different source contributions, but indicate that none of the OIB analysed here are derived solely from dry peridotite melting. Nor can differences in lithospheric thickness explain trace element variability in olivine between different ocean islands. We present new halogen (F, Cl, Br/Cl, I/Cl) data along with incompatible trace element data for the global array and encourage measurement of fluorine along with heavier halogens to obtain better insight into halogen cycling. We suggest that Ti-rich silica-undersaturated melts require a contribution from carbonated lithosphere, either peridotite or eclogite and are an important component sampled by ocean island basalts, together with altered oceanic crust. These results provide new insights into our understanding of mantle-scale geochemical cycles, and also lead to the potential for the mantle transition zone as an underestimated source for observed volatile and trace-element enrichment in ocean island basalts.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3