Conditions and Dynamics of Magma Storage in the Snæfellsnes Volcanic Zone, Western Iceland: Insights from the Búðahraun and Berserkjahraun Eruptions

Author:

Kahl Maren1ORCID,Bali Enikő23,Guðfinnsson Guðmundur H2,Neave David A4ORCID,Ubide Teresa5ORCID,van der Meer Quinten H A2,Matthews Simon26

Affiliation:

1. Institut Für Geowissenschaften, Universität Heidelberg, Im Neuenheimer Feld 234-236, 69120 Heidelberg, Germany

2. Nordic Volcanological Center, Institute Of Earth Sciences, University Of Iceland, Sturlugata 7, Reykjavík 101, Iceland

3. Faculty Of Earth Sciences, University Of Iceland, Sturlugata 7, Reykjavík 101, Iceland

4. Department Of Earth And Environmental Sciences, The University Of Manchester, Oxford Road, Manchester M13 9PL, UK

5. School Of Earth & Environmental Sciences, The University Of Queensland, St Lucia Campus, Brisbane, Queensland 4072, Australia

6. Department Of Earth Sciences, University Of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK

Abstract

Abstract Establishing the conditions and dynamics of pre-eruptive magma storage and transfer within transient transcrustal storage networks is a major focus of quantitative volcanic petrology. In Iceland, the behaviour, conditions and timescales of magmatic processes within on-rift plumbing systems are increasingly well constrained. However, relatively little is known about magma storage and transfer in off-rift zones, despite off-rift volcanoes being able to generate hazardous explosive eruptions after centuries or millennia of dormancy (e.g. 2010 AD Eyjafjallajökull; 1362 AD Öræfajökull; 3.0 ka, 4.2 ka and 1104 AD Hekla). We present a combined geochemical and geothermobarometric study of magma storage and transfer recorded in the products of the postglacial Búðahraun (∼5.0–8.0 ka) and Berserkjahraun (∼4.0 ka) eruptions within the Snæfellsnes volcanic zone. The eruption products contain diverse and compositionally heterogeneous macrocryst cargoes recording complex petrogenetic histories of crystal evolution and inheritance from different parts of the sub-volcanic plumbing systems. Geothermobarometry indicates two compositionally and thermally heterogeneous magma storage regions located in the lower (20 ± 4 km) and upper-mid (11 ± 3 km) crust. Crystallization pressure and depth estimates coincide with comparable data from Vatnafell, a small sub-glacial table mountain (tuya) in the centre of the Snæfellsnes volcanic zone, indicating that the nature and conditions of magma storage have remained unchanged since the Upper Pleistocene. Trace element zoning of clinopyroxene macrocrysts indicates that mafic recharge into the upper-mid-crustal storage zone triggered the eruptions of Búðahraun and Berserkjahraun. Evidence for eruption-triggering mafic recharge and basaltic cannibalism involving the transfer and amalgamation of crystals with different evolutionary histories sets the Búðahraun and Berserkjahraun eruptions apart from other studied eruptions in Iceland. We propose that the compositional and textural diversity preserved within the crystal cargoes are a direct consequence of the reduced heat flow beneath the Snæfellsnes volcanic zone, which favours the formation of isolated melt pockets in which compositionally diverse macrocryst populations formed. Periodic flushes of primitive basaltic magma from depth promote widespread mixing with evolved melts, resulting in the assembly of crystals with diverse ancestries from different parts of the sub-volcanic systems. Insights gained from the diverse macrocryst cargoes of Búðahraun and Berserkjahraun and comparisons with recent off-rift volcanism in Iceland are essential for the development of future monitoring efforts and hazard evaluation. Although volcanism within the Snæfellsnes volcanic zone differs fundamentally from that in rift zones where eruptions are controlled by extensional spreading, magma ascent from depth still appears to follow pre-existing tectonic escape routes. This could result in extremely short advance warning times on the order of a few days.

Funder

Icelandic Centre for Research

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3