LA-ICP-MS Analysis of Crystallized Melt Inclusions in Olivine, Plagioclase, Apatite and Pyroxene: Quantification Strategies and Effects of Post-Entrapment Modifications

Author:

Chang Jia12,Audétat Andreas2

Affiliation:

1. School of Earth Resources and State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China

2. Bavarian Geoinstitute, University of Bayreuth, Bayreuth 95440, Germany

Abstract

Abstract Melt inclusions represent a unique tool to reconstruct the composition and chemical evolution of silicate melts in magmatic systems. Laser-ablation inductively-coupled-plasma mass-spectrometry (LA-ICP-MS) is the most commonly used microanalytical technique to analyse crystallized melt inclusions without prior re-homogenization. Well-preserved melt inclusions can be quantified by subtracting the contribution of co-ablated host with a carefully selected internal standard. However, post-entrapment compositional re-equilibration commonly renders this task difficult, to the same degree as it would affect any quantification after prior re-homogenization. In this study, we first examine well-preserved, crystallized melt inclusions hosted in olivine, plagioclase, apatite, clinopyroxene and orthopyroxene from porphyry dikes and volcanic rocks to test various quantification strategies and evaluate the associated uncertainties, and then we use these strategies to quantify coarsely crystallized melt inclusions from gabbroic rocks at Marble Canyon (USA) and Laiyuan (China) that experienced severe post-entrapment modifications due to relatively slow cooling rates. The results demonstrate that even for well-preserved melt inclusions hosted in chemically complex minerals the uncertainty related to inclusion–host deconvolution can be rather high (up to 30‒50% for host-incompatible trace elements significantly above their limits of detection), though other uncertainties inherent to LA-ICP-MS analysis are relatively small (typically ≤5‒10%). The deconvolution-related uncertainty can be minimized to ca. 10% by (1) choosing whole rocks that are fresh and representative of magmatic liquids, (2) choosing the smallest possible spot size to ablate the melt inclusions, and (3) choosing a host endmember that is compositionally as similar as possible to the one ablated together with the inclusion. Results of coarsely crystallized melt inclusions from gabbroic rocks suggest that the range of elements affected by post-entrapment re-equilibration varies from intrusion to intrusion. Olivine-hosted melt inclusions from Marble Canyon appear to have diffusively lost Fe, Ti and Ca, whereas those from Laiyuan lost Fe, Na, Al, Ca, Ti and Y and gained V. However, the relative abundances of K, P, Rb, Sr, Zr, Nb, Mo, Cs, Ba, Ce, Ta, Pb, Th, U and ±Cu appear unchanged. Plagioclase-hosted melt inclusions from Marble Canyon are relatively well-preserved, whereas those from Laiyuan lost significant amounts of Fe, K, Mg, Mn, Rb and Co. Apatite-hosted melt inclusions seem well preserved with regard to most elements except for Cu. These results suggest that despite the post-entrapment modification of certain element concentrations and the associated difficulties in melt inclusion quantification, information on the approximate abundances of other elements that are invaluable for petrogenetic and metallogenic studies can still be retrieved from melt inclusions in gabbroic rocks using the LA-ICP-MS technique.

Funder

China Scholarship Council

Newmont Mining Corporation Fund

China Postdoctoral Science Foundation Grant

Postdoctoral Innovative Talents

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3