A Mantle Plume Connection for Alkaline Lamprophyres (Sannaites) from the Permian Tarim Large Igneous Province: Petrological, Geochemical and Isotopic Constraints

Author:

Liu Bingxiang1,Zhang Zhaochong1,Giuliani Andrea2,Xie Qiuhong1,Kong Weiliang1,Wang Changhong1,Wei Bowen1,Ke Shan1,Santosh M13,Zhang Bo4,Zhang Xingchao5,Krmíček Lukáš67

Affiliation:

1. China University of Geosciences State Key Laboratory of Geological Processes and Mineral Resources, , Beijing, 100083, China

2. Institute of Geochemistry and Petrology , Department of Earth Sciences, ETH Zurich, Clausiusstrasse 25, Zurich, 8092, Switzerland

3. University of Adelaide Department of Earth Sciences, , SA, 5005, Australia

4. Peking University The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, , Beijing, China

5. University of Science and Technology of China CAS Key Laboratory of Crust-Mantle Materials and Environments, Department of Earth and Space Sciences, , Hefei, 230026, China

6. Institute of Geology of the Czech Academy of Sciences , Rozvojová 269, CZ-165 00 Prague 6, Czech Republic

7. Brno University of Technology , Faculty of Civil Engineering, Institute of Geotechnics, Veveří 95, CZ-602 00 Brno, Czech Republic

Abstract

AbstractThe origin of lamprophyres associated with large igneous provinces (LIPs) remains controversial, particularly whether they are derived by direct melting of mantle plumes, or from previously metasomatized domains in thermally perturbed subcontinental lithosphere. Here, we report the petrological and geochemical characteristics of a recently identified suite of alkaline lamprophyres (sannaites) that represent the final pulse of magmatism in the Permian Tarim LIP in NW China. The sannaites display porphyritic texture with phenocrysts of olivine, clinopyroxene, hornblende, phlogopite, and titanomagnetite in a groundmass of plagioclase, clinopyroxene, nepheline, hornblende, biotite, and titanomagnetite with minor pyrite and apatite. Carbonate ocelli and almost pure albite in the groundmass are interpreted to have crystallized from immiscible carbonate and hydrous fluids, respectively, produced by late-stage magmatic segregation. The rocks show low to moderate SiO2 (37.7–49.3 wt.%) and MgO (2.74–9.91 wt.%), together with high Fe2O3T (up to 22.7 wt.%) and alkali contents (up to 9.02 wt.% Na2O + K2O). They are characterized by high incompatible element abundances, especially a marked enrichment in large-ion lithophile elements (Rb and Ba) and light rare-earth elements (e.g. La and Ce) relative to P and high-field-strength elements (e.g. Ti). They show a relatively restricted range of δ66Zn values between 0.22‰ and 0.46‰ with an average of 0.37 ± 0.04‰ (2SE, n = 10), which is marginally heavier than that of MORBs (0.27 ± 0.05‰). Their (87Sr/86Sr)t values range from 0.7035 to 0.7061, εNd(t) from −0.97 to +5.62, and δ26Mg from −0.36‰ to −0.17‰ (n = 8), the latter being consistent with those of global MORBs. Based on the correlation between Zn isotopes and TiO2–FeO concentrations, we infer that the heavy Zn isotopes in some of the sannaites resulted from fractional crystallization of Fe–Ti oxide minerals. The whole rock geochemical features of these rocks (negative K anomalies and enrichment in large-ion lithophile elements) and rhyolite–MELTS simulations suggest that the primary magmas of the sannaites were derived from an amphibole-bearing enriched lithospheric mantle source. Metasomatism and related formation of amphibole-bearing metasomatized mantle may be linked to sublithospheric melts/fluids derived from the Tarim plume in the earlier stages of plume activity, rather than slab-derived fluids or carbonate melts as suggested in previous studies for other alkaline mantle-derived magmas. Partial melting may have been triggered by the thermal input from the Tarim plume during a later stage. This study suggests that exotic, alkali-rich magmas can be produced during the multi-stage evolution of large mantle plumes, involving complex cycles of lithospheric mantle metasomatism and later melting of previously enriched domains.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3