Melting Phase Equilibria from 4 to 7 GPa in the System CaO-MgO-Al2O3-SiO2-CO2, the Persistence of the “Ledge” in Carbonated Basalt with Excess Silica, and the Most Likely Limits on the Depths of Termination of Carbon Cycle at Subduction Zones

Author:

Keshav Shantanu12,Hammouda Tahar3,Gudfinnsson Gudmundur H14

Affiliation:

1. Bayerisches Geoinstitut, Universität Bayreuth , Bayreuth, Germany

2. Thapar Institute of Engineering & Technology Thapar School of Liberal Arts and Sciences, , Patiala, Punjab, India

3. Institut de Recherche Dévelopment Université Clermont Auvergne, Centre Nationale de la Recherche Scienctifique, , Observatoire de Physique du Globe, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France

4. University of Iceland NordVulk, Institute of Earth Sciences, , Reykjavik, Iceland

Abstract

Abstract Melting phase relations involving model carbonated basalt with excess silica were studied in experiments over the pressure range of 4–7 GPa in the system CaO-MgO-Al2O3-SiO2-CO2 to determine if there is a sharp decrease in the melting temperatures along the transition from carbon dioxide vapor (vapor) to dolomite. The phase assemblages of clinopyroxene + garnet + coesite + vapor + carbon dioxide-bearing silicate liquid (silicate liquid) and clinopyroxene + garnet + coesite + dolomite + carbonate liquid, exist over 4–5 and 5.8–7 GPa, respectively. These two distinct phase assemblages form the two, vapor + silicate liquid and dolomite + carbonate liquid-bearing divariant surfaces. The dissolved carbon dioxide and the molar calcium number [Ca# 100*(Ca/Ca + Mg)] of the silicate and carbonate liquids are approximately 4–8 wt% and between 50–55 and 35–40 wt% and 69–71, respectively. The compositions of phases vary little, implying minimal topography along the two surfaces, and the temperatures rise linearly along the silicate liquid-bearing divariant surface over 4–5 GPa. Between 5.2 and 5.6 GPa, however, the temperatures decrease precipitously by ~200–250°C and, along with this steep decline, the liquid changes from silicate to carbonate, with the rest of the phase assemblage of clinopyroxene + garnet + coesite + vapor, persisting. Hence, and this is important to emphasize, this liquid, coexisting with vapor, is carbonate in composition in the absence of dolomite. Isobaric invariance, at 5.4 GPa/1250°C, 5.6 GPa/1150°C, and 5.8 GPa/1100°C, consists of the six-phase assemblage of clinopyroxene + garnet + coesite + vapor + dolomite + carbonate liquid. Melting phase relations are thus univariant, and correspond to that of a solidus ‘ledge’, i.e. with a negative Clapeyron slope, in this part of the composition space. The melting reaction along the ledge is clinopyroxene + vapor = garnet + coesite + dolomite + carbonate liquid, and the ledge separates the two divariant surfaces. The Ca# of the coexisting carbonate liquid and dolomite here are opposite to those of the carbonate liquid and dolomite on the calcite-magnesite join at similar pressures as in this study. This is most likely a consequence of the combined effects of (a) observations from experiments and theory that the fusion curve of calcite starts to diverge from that of magnesite toward lower temperatures at pressures in excess of ~5 GPa, and (b) the pressure, where ultrabasic silicate–carbonate (~2.5–3 GPa) and excess-silica carbonate-basalt (>4 GPa, as inhere) systems undergo carbonation. These, in turn, cause the liquid and dolomite in experiments here to become more calcic and more magnesian than observed in experiments on the calcite-magnesite join. The solidus ledge, here, has a profound effect because the most plausible modern-day model ocean crust subduction zone geotherms in Earth will, in all likelihood, intersect it and cause fusion of dolomite, thereby, in effect, liberating all carbon from what once was a carbonate-basalt mixture. Thereafter, little exists to suggest that there is anything ‘deep’ to the carbon cycle, through recycling, with most of it likely confined to less than ~200 km in Earth.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3