Textures and Chemistry of Crystal Cargo of the Pleiades Volcanic Field, Antarctica: Potential Influence of Ice Load in Modulating the Plumbing System

Author:

Rocchi Irene1ORCID,Tomassini Alice1,Masotta Matteo12ORCID,Petrelli Maurizio3ORCID,Ágreda López Mónica3,Rocchi Sergio12

Affiliation:

1. University of Pisa Department of Earth Sciences, , Via S. Maria 53, 56126 Pisa, Italy

2. Center for Instrument Sharing of the University of Pisa (CISUP) , Lungarno Pacinotti 43/44, 56126 Pisa, Italy

3. University of Perugia Department of Physics and Geology, , Piazza Università 1, 06123 Perugia, Italy

Abstract

Abstract The Pleiades Volcanic Field (PVF) of northern Victoria Land (Antarctica) is made up of a dozen scoria cones whose erupted products present an unusually complete evolutionary trend from alkali-basalt to trachyte. With the aim of reconstructing the evolution of the PVF plumbing system, we have investigated the petrography and chemistry of main mineral phases using scanning electron microscopy (SEM-EDS) coupled with major element analyses using an electron probe microanalyser (EPMA-WDS). We further focussed on clinopyroxene phenocrysts obtaining a more detailed characterization by means of trace laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) element analyses coupled with machine learning thermobarometry. The results indicate that fractional crystallization and magma mixing are the major processes determining the development of the complete evolution trend. While fractional crystallization is a persistently active process in all parts of the plumbing system, mixing among differently evolved magma batches pertaining to the same association is responsible for the formation of intermediate compositions in the differentiation lineage at a specific pressure range (0.4–0.5 GPa). These processes are compatible with significant residence time of magmas at depth, resulting in multiple episodes of magma mixing, as testified by resorption and overgrowth textures in phenocryst assemblage occurring under isobaric conditions. The prolonged residence time likely increased the efficiency of the mixing process, leading to the formation of magmas with intermediate composition. In turn, the build-up of volatiles during the magma differentiation at depth could have favoured the eruption of these (variably differentiated) magmas. Considering that the PVF is situated in a glacial region, a process forcing long magma residence time can be envisaged associated with increased ice loading during glacial stages. This study specifically considers the ice fluctuations in the last 100 ka, theorizing the possibility of a climate-controlled volcano plumbing system.

Publisher

Oxford University Press (OUP)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3