An Internally-Consistent Database for Oxygen Isotope Fractionation Between Minerals

Author:

Vho Alice1,Lanari Pierre1ORCID,Rubatto Daniela12

Affiliation:

1. Institute of Geological Sciences, University of Bern, Baltzerstrasse 1-3, Bern CH-3012, Switzerland

2. Institut de Sciences de la Terre, University of Lausanne, Lausanne CH-1015, Switzerland

Abstract

AbstractThe knowledge of the fractionation behaviour between phases in isotopic equilibrium and its evolution with temperature is fundamental to assist the petrological interpretation of measured oxygen isotope compositions. We report a comprehensive and updated internally consistent database for oxygen isotope fractionation. Internal consistency is of particular importance for applications of oxygen isotope fractionation that consider mineral assemblages rather than individual mineral couples. The database DBOxygen is constructed from a large dataset of published experimental, semi-empirical and natural data, which were weighted according to type. It includes fractionation factors for 153 major and accessory mineral phases and a pure H2O fluid phase in the temperature range of 0–900°C, with application recommended for temperatures of 200–900°C. Multiple primary data for each mineral couple were discretized and fitted to a model fractionation function. Consistency between the models for each mineral couple was achieved by simultaneous least square regression. Minimum absolute uncertainties based on the spread of the available data were calculated for each fractionation factor using a Monte Carlo sampling technique. The accuracy of the derived database is assessed by comparisons with previous oxygen isotope fractionation calculations based on selected mineral/mineral couples. This database provides an updated internally consistent tool for geochemical modelling based on a large set of primary data and including uncertainties. For an effective use of the database for thermometry and uncertainty calculation we provide a MATLAB©-based software ThermoOx. The new database supports isotopic modelling in a thermodynamic framework to predict the evolution of δ18O in minerals during metamorphism.

Funder

Swiss National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3