Mixing Loops, Mixing Envelopes, and Scattered Correlations among Trace Elements and Isotope Ratios Produced by Mixing of Melts Derived from a Spatially and Lithologically Heterogenous Mantle

Author:

Liang Yan1

Affiliation:

1. Brown University Department of Earth, Environmental and Planetary Sciences, , Providence, RI 02912, USA

Abstract

Abstract Mixing has been widely used in the interpretation of radiogenic isotope ratios and highly incompatible trace element variations in basalts produced by melting of a heterogeneous mantle. The binary mixing model is constructed by considering mass balance of endmember components, which is independent of physical state and spatial distribution of the endmembers in the mantle source. Variations of radiogenic isotope ratios and highly incompatible trace elements in basalts also depend on the size and spatial distribution of chemical and lithological heterogeneities in the mantle source. Here we present a new mixing model and a mixing scheme that take into account of the size, spatial location, and melting history of enriched mantle (EM) and depleted mantle (DM) parcels in the melting column. We show how Sr, Nd, and Hf concentrations and isotope ratios in the aggregated or pooled melt collected at the top of the melting column vary as a function of location of the EM parcel in the melting column. With changing location of the EM parcel in the upwelling melting column, compositions of the pooled melt do not follow a single mixing curve expected by the binary mixing model. Instead, they define a mixing loop that has an enriched branch and a depleted branch joined by two extreme points in composition space. The origin of the mixing loop can be traced back to four types of EM distribution or configuration in the melting column. The shape of the mixing loop depends on the relative melting rate of the EM to that of the DM and the number and spacing of EM parcels in the melting column. Probabilities of sampling the enriched and depleted branches in the pooled melt are proportional to volume fractions of the enriched and depleted materials in the mantle source. Mixing of pooled melts from a bundle of melting columns results in mixing envelopes in the isotope ratio correlation diagrams. The mixing envelope is a useful tool for studying chemical variations in mantle-derived melts. As an application, we consider scattered correlations in 87Sr/86Sr vs. 143Nd/144Nd and 143Nd/144Nd vs. 176Hf/177Hf in mid-ocean ridge basalts. We show that such correlations arise naturally from melting of a spatially heterogeneous mantle.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3