Sheared Peridotites from Kimberley (Kaapvaal Craton, RSA): Record of Multiple Metasomatic Events Accompanied with Deformation

Author:

Heckel Catharina12,Woodland Alan B12,Linckens Jolien1,Gibson Sally A3,Seitz Hans-Michael12

Affiliation:

1. Goethe-Universität Frankfurt Institut für Geowissenschaften, , Altenhöferallee 1, 60438 Frankfurt am Main, Germany

2. Goethe-Universität Frankfurt Frankfurt Isotope and Element Research Center (FIERCE), , 60438 Frankfurt am Main, Germany

3. University of Cambridge Department of Earth Sciences, , Downing Street, CB2 3EQ, UK

Abstract

Abstract Sheared peridotites from the Kaapvaal craton may be broadly divided into two types: (1) high T and refertilized and (2) low T and highly depleted, which equilibrated at conditions lying either above or along the Kaapvaal craton conductive geotherm, respectively. Here, we have studied 14 low-T sheared peridotites from Kimberley entrained by several Late Cretaceous (90 Ma) kimberlites in order to constrain the nature and timing of the deformation. The sample suite comprises nine garnet peridotites (GPs) with various amounts of clinopyroxene ± isolated spinel, three garnet-free phlogopite peridotites (PPs) with minor amounts of spinel, one garnet–spinel peridotite (GSP) and one dunite. The peridotites have intense deformation textures, ranging from porphyroclastic to fluidal mosaic. Olivine and orthopyroxene compositions (Mg# = 91–94) indicate varying degrees of depletion, similar to coarse-grained peridotites from the same localities. Pre-deformation conditions of the GPs are preserved in the cores of large (>100 μm–mm diameter) porphyroclasts and give a range in temperature of 930–1000°C at pressures of 4.0 ± 0.4 GPa. The GSP was equilibrated at 840°C and 3.1 GPa. Projected onto a 40-mW/m2 geothermal gradient, the PP samples yield temperatures of 850–870°C at 3.3–3.4 GPa. Trace element measurements by laser ablation inductively coupled plasma mass spectrometry and electron microprobe indicate that the ‘cold’ sheared peridotites were influenced by several metasomatic events, ranging from ‘old’ pre-deformation metasomatism to interactions shortly before or during deformation. The old pre-deformation metasomatism is recorded in garnet, clinopyroxene and orthopyroxene porphyroclasts and implies interactions with phlogopite–ilmenite–clinopyroxene- or muscovite–amphibole–rutile–ilmenite–diopside-related metasomatic agents, which also led to crystallization of phlogopite in the garnet-free peridotites. A ‘young’ metasomatic event caused an enrichment in Fe, Ti, Ca and Y (+heavy rare earth elements) and is evident in zoned orthopyroxene and clinopyroxene and phlogopite, the crystallization of new clinopyroxene porphyroclasts and compositional heterogeneities in garnet. This young event marks the beginning of extensive kimberlite-related metasomatism in the late Cretaceous beneath Kimberley. The metasomatism caused the deformation (triggered by a kimberlite pulse?), resulting in the recrystallization of fine-grained, mainly olivine, neoblasts (down to <10 μm). These record the metasomatic conditions at the time of deformation, revealing an increase in temperature up to 1200°C accompanied by an increase in Ti content up to 300 μg/g. Crystal preferred orientations of olivine neoblasts suggest the presence of elevated concentrations of water (B, C, E type) or the presence of a melt during the deformation (AG type). We suggest that these high water contents led to hydrolytic weakening of the cratonic lithosphere and prepared the pathways for subsequent kimberlite magmas to reach the surface. We propose that the deformation is a byproduct of extensive metasomatism, resulting in a metasomatism–deformation cycle. In times of extensive magmatism and metasomatism, fluids and melts flow along the pathways established by previous metasomatic agents, leading to further hydrolytic weakening of these mantle segments. Later, deformation was initiated by a new pulse of melt/fluid, with one of the later pulses eventually reaching the surface and transporting fragments of sheared and undeformed peridotites with it. The remaining peridotite anneals after the period of extensive metasomatism and recrystallizes to become coarse-grained peridotite again.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3