Crustal Contamination and Hybridization of an Embryonic Oceanic Crust during the Red Sea Rifting (Tihama Asir Igneous Complex, Saudi Arabia)

Author:

Basch V1,Sanfilippo A12,Vigliotti L3,Langone A2,Rasul N4,Khorsheed M4,Al Nomani S4,Al Qutub A4,Ligi M3

Affiliation:

1. Dipartimento di Scienze della Terra e dell’Ambiente, Università degli Studi di Pavia, Via Ferrata, 1 - 27100 Pavia, Italy

2. Istituto Geoscienze e Georisorse, CNR, Pavia, Via Ferrata, 1 - 27100 Pavia, Italy

3. Istituto di Scienze Marine, CNR, Bologna, Via Gobetti, 101 - 40129 Bologna, Italy

4. Center for Marine Geology, Saudi Geological Survey, Jeddah, Al Waha - 23352 Jeddah, Saudi Arabia

Abstract

AbstractThe Red Sea rift system represents a key case study of the transition from a continental to an oceanic rift. The Red Sea rifting initiated in Late Oligocene to Early Miocene (24–23 Ma) and was accompanied by extensive magmatism throughout the rifted basin, from Afar and Yemen to northern Egypt. Here, we present a petrological and geochemical study of two gabbro bodies and associated basalts from the Tihama Asir igneous complex, which formed at 24–20 Ma within the rifted Arabian-Nubian Shield (ANS). The Tihama Asir is therefore an ideal location to study the initial phase of syn-rift magmatism and its influence on the geodynamic evolution of the Red Sea rift system. The most primitive olivine gabbros present modal, bulk and mineral compositions consistent with formation from Mid-Ocean Ridge Basalt (MORB)-type parental melts, whereas the evolved olivine-free gabbros and oxide-bearing gabbros show saturation of phlogopite and a crystal line of descent diverging from fractional crystallization trends. In detail, whole-rock and mineral compositions in the most evolved lithologies show high Light over Middle Rare Earth Elements (LREE/MREE) ratios (LaN/SmN = 0.89–1.31) and selective enrichments in Sr, K and highly incompatible elements (Rb, Ba, U, Th). We relate these geochemical characteristics to a process of progressive assimilation of host continental crust during the emplacement of the gabbroic plutons. Interestingly, high LREE/MREE ratios (LaN/SmN = 1.45–4.58) and high Rb, Ba, Th and U contents also characterize the basaltic dike swarms associated to the gabbros. Incompatible trace element compositions of these basalts approach those of the melts that formed the most hybridized gabbros. Therefore, we propose that the dike swarms represent melts partially contaminated by assimilation of continental crust material, extracted from the underlying gabbroic crystal mush. Our results suggest that early syn-rift magmatism led to the partial replacement of the thinned continental crust by MORB-type gabbroic bodies, in turn suggesting that oceanic magmatism started prior to continental break-up. Extensive syn-rift magmatism is consistent with the interpretation of the southern Red Sea rift system as a volcanic rifted margin. One possible implication of this study is that extensive but diffuse syn-rift magmatism possibly hampered continental break-up, leading to a protracted rifting stage.

Funder

PRIN2017 Programme

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3