Melt Diffusion-Moderated Crystal Growth and its Effect on Euhedral Crystal Shapes

Author:

Mangler Martin F1ORCID,Humphreys Madeleine C S1,Geifman Eshbal12,Iveson Alexander A1ORCID,Wadsworth Fabian B1,Brooker Richard A3,Lindoo Amanda13,Hammond Keiji4

Affiliation:

1. Durham University Department of Earth Sciences, , Durham DH1 3LE, UK

2. Trinity College Dublin Department of Geology, , Durham D02 F227, Ireland

3. University of Bristol School of Earth Sciences, , Bristol BS8 1RJ, UK

4. American Museum of Natural History , New York NY 10024, USA

Abstract

Abstract Crystal growth is often described as either interface-controlled or diffusion-controlled. Here, we study crystal growth in an intermediate scenario where reaction rates at the crystal-melt interface are similar to the rates of diffusive transport of ions through the melt to the advancing crystal surface. To this end, we experimentally investigated euhedral plagioclase crystal shapes in dry mafic (basaltic) and hydrous silicic (haplodacitic) melts. Aspect ratios and inferred relative growth rates of the 3D short (S) and intermediate (I) crystal dimensions vary significantly between mafic and silicic melts, with δS:δI = 1:6–1:20 in basalt and 1:2.5–1:8 in hydrous haplodacite. The lower aspect ratios of plagioclase grown in the silicic melt coincide with 10 to 100× lower melt diffusion rates than in the mafic melt. Using an anisotropic growth model, we show that such differences in melt diffusivity can explain the discrepancy in plagioclase aspect ratios: if interface reaction and melt diffusion rates are of similar magnitude, then the growth of a crystal facet with high interfacial reaction rates may be limited by melt diffusion, while another facet of the same crystal with lower interfacial reaction rates may grow uninhibited by melt diffusivity. This selective control of melt diffusion on crystal growth rates results in progressively more equant crystal shapes as diffusivity decreases, consistent with our experimental observations. Importantly, crystals formed in this diffusion-moderated, intermediate growth regime may not show any classical diffusion-controlled growth features. The proposed model was developed for plagioclase microlites but should be generalisable to all anisotropic microlite growth in volcanic rocks.

Funder

The Leverhulme Trust through an Early Career Fellowship

Royal Society

European Research Council (ERC)n

UK Natural Environment Research Council

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3