Genesis of Recent Mafic Magmatism in the Taupo Volcanic Zone, New Zealand: Insights into the Birth and Death of Very Large Volume Rhyolitic Systems?

Author:

Zellmer Georg F1ORCID,Kimura Jun-Ichi2,Stirling Claudine H3,Lube Gert1,Shane Phil A4,Iizuka Yoshiyuki5

Affiliation:

1. Volcanic Risk Solutions, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand

2. Department of Solid Earth Geochemistry, Jamstec, Natsushima-Cho 2-15, Yokosuka 237-0061, Japan

3. Centre for Trace Element Analysis and Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand

4. School of Environment, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand

5. Institute of Earth Sciences, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 11529, Taiwan

Abstract

Abstract Mafic magmatism of the rifting Taupo Volcanic Zone (TVZ) of the North Island, New Zealand, is volumetrically minor, but is thought to tap the material that provides the heat source for voluminous rhyolite production through partial melting of the crust, which ultimately results in very large volume explosive eruptions. We have studied the major and trace element chemistry of 14 mafic samples from across the entire TVZ, and the U isotopic composition of whole-rocks, groundmasses and separates of mafic mineral phases from a selection of nine samples (with the remaining five too sparsely phyric for mineral separation). Some minerals yield significant 234U enrichments despite groundmass and whole-rock close to 238U–234U secular equilibrium, pointing to uptake of variably hydrothermally altered antecrystic minerals prior to the eruption of originally sparsely phyric to aphyric mafic magmas. However, incompatible trace element patterns indicate that there are three chemically distinct groups of samples, and that samples may be used to derive primary melt compositions. We employ the latest version of the Arc Basalt Simulator (ABS5) to forward model these compositions, deriving mantle source parameters including mantle fertility, slab liquid flux, mantle volatile content, degree of melting, and P–T conditions of melt segregation. We show that mafic rocks erupted in areas of old, now inactive calderas constitute low-degree, deep melts, whereas those in areas of active caldera-volcanism are high-degree partial melts segregated from a less depleted source at an intermediate depth. Finally, high-Mg basaltic andesites erupted in the SW and NE of the TVZ point to a fertile, shallow mantle source. Our data are consistent with a petrogenetic model in which mantle melting is dominated by decompression, rather than fluid fluxing, and progresses from shallow to deeper levels with time. Melt volumes initially increase to a tipping point, at which large-scale crustal melting and caldera volcanism become prominent, and then decrease owing to progressive depletion of the mantle wedge by melting, resulting in the dearth of heat provided and eventual cessation of very large volume rhyolitic volcanism. ABS5 modelling therefore supports the notion of a direct link between the chemistry of recently erupted mafic magmas and the long-term activity and evolution of rhyolitic volcanism in the TVZ.

Funder

Massey University Research Fund

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3