The Lead-up to Mount Etna’s Most Destructive Historic Eruption (1669). Cryptic Recharge Recorded in Clinopyroxene

Author:

Magee Ruadhan1ORCID,Ubide Teresa1ORCID,Kahl Maren2

Affiliation:

1. School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia

2. Institut für Geowissenschaften, Universität Heidelberg, 69120 Heidelberg, Deutschland

Abstract

Abstract An understanding of destructive historic eruptions has important implications for the assessment of active plumbing systems and the processes that might precede future hazardous eruptions. At Mount Etna (Sicily, Italy), magma production and eruption frequency have increased dramatically since 1970, however, the recent eruptions are considerably less voluminous than those of the 17th century, which occurred at greater intervals. Seventeenth century activity culminated in the 1669 flank eruption, the most voluminous and destructive in Etna’s recorded history, marking the beginning of a new eruptive period. In this study, we examine trace element zoning patterns recorded in clinopyroxene (lava hosted microcrysts: 0·5–1 mm, lava hosted macrocrysts: 1–5 mm and scoria hosted megacrysts: >5 mm) to reconstruct magma dynamics leading up to the 1669 eruption. The clinopyroxene data are considered alongside previous studies of olivine and plagioclase to present an updated conceptual model for the plumbing system, providing a better understanding of magmatic processes in the lead up to hazardous volcanism. Petrological observations in combination with laser ablation ICP-MS mapping reveal sharp compositional zoning of clinopyroxene, not seen in major element transects. Trace element data, including Cr, Zr, Ni and rare earth elements, show that core, mantle and rim regions originated in distinct magmatic environments. Chromium-rich cores (up to 1080 ppm Cr) are in disequilibrium with the glassy-microcrystalline host groundmass and indicate crystal inheritance from a primitive magma source. Oscillatory zoning in the mantle of the crystals suggests a sustained period of magma replenishment and crystallization. Finally, ubiquitous Cr-rich (170–220 ppm) rims host many large melt inclusions, suggesting a final recharge event inducing relatively rapid crystal growth and eruption. Temperatures of 1120–1160 ± 27°C and pressures of 300–600 ± 200 MPa calculated for the three magmatic environments based on clinopyroxene composition at 2 wt % H2O place most of the clinopyroxene crystallization at more than 10 km depth. Measuring the consistent thickness of crystal rims (219 ± 33 µm) and assuming growth at a low degree of undercooling (10−8 cm/s), we calculate that the eruption triggering magma recharge invaded the plumbing system less than a month before eruption onset, in agreement with historical accounts of pre-eruptive seismicity. Notably, Cr enrichment in the recharge magma was not coupled with increases in MgO content. We therefore propose that a cryptic recharge with similar composition to the resident melt may have tipped the system to erupt, and that the volume of recharge rather than composition or temperature acted as the primary trigger. Finally, LA-ICP-MS maps of clinopyroxene from the previous eruption of Mount Etna (1651–53) revealed strikingly similar compositional zonation to that of 1669, supporting the notion that magmatic storage environments, associated with voluminous 17th century activity, were long-lived.

Funder

The University of Queensland

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3