Ultra-Refractory Peridotites of Phanerozoic Mantle Origin: the Papua New Guinea Ophiolite Mantle Tectonites

Author:

Barrett Natasha1,Jaques A Lynton2,González-Álvarez Ignacio34,Walter Michael J5,Pearson D Graham1

Affiliation:

1. University of Alberta Department of Earth and Atmospheric Sciences, , Edmonton T6G 2E3, Alberta, Canada

2. Australian National University Research School of Earth Sciences, , Canberra 2600, Australian Capital Territory, Australia

3. Australian Resources Research Centre CSIRO Mineral Resources, , Kensington 6151, Western Australia, Australia

4. The University of Western Australia Centre for Exploration Targeting, , Perth 6009, Western Australia, Australia

5. Carnegie Institution for Science Earth and Planets Laboratory, , Washington, D.C. 20015, USA

Abstract

Abstract Harzburgites and dunites forming the base of the Late Cretaceous–Paleocene Papuan Ultramafic Belt (PUB) and Marum ophiolites of Papua New Guinea (PNG) are among the most refractory mantle peridotites on Earth. We present a new integrated dataset of major element, bulk plus mineral trace element and Re–Os isotopic analyses aimed at better understanding the genesis of these peridotites. The PUB harzburgites contain olivine (Fo92–93), low-Al enstatite (less than or equal to 0.5 wt. % Al2O3 and CaO), and Cr-rich spinel (Cr# = 0.90–0.95). The Marum harzburgites are less refractory with olivine (Fo91.9–92.7), enstatite (~0.5–1.0 wt. % Al2O3 and CaO), minor clinopyroxene (diopside), and spinel (Cr# = 0.71–0.77). These major element characteristics reflect equivalent or greater levels of melt depletion than that experienced by Archean cratonic peridotites. Whereas bulk-rock heavy rare earth element (HREE) abundances mirror the refractory character indicated by the mineral chemistry and major elements, large-ion lithophile elements indicate a more complex melting and metasomatic history. In situ olivine and orthopyroxene REE measurements show that harzburgites and dunites have experienced distinct melt-rock interaction processes, with dunite channels/lenses, specifically, showing higher abundances of HREE in olivine. Distinctive severe inter-element fraction of platinum group elements and Re result in complex patterns that we refer to as ‘M-shaped’. These fractionated highly siderophile element (HSE) patterns likely reflect the dissolution of HSE-rich phases in highly depleted peridotites by interaction with subduction-related melts/fluids, possibly high-temperature boninites. Osmium isotope compositions of the PNG peridotites are variable (187Os/188Os = 0.1204 to 0.1611), but fall within the range of peridotites derived from Phanerozoic oceanic mantle, providing no support for ancient melt depletion, despite their refractory character. This provides further evidence that highly depleted peridotites can be produced in the modern Earth, in subduction zone environments. The complex geochemistry indicates a multi-stage process for the formation of the PNG mantle peridotites in a modern geodynamic environment. The first stage involves partial melting at low-pressure (<2 GPa) and high-temperature (~1250°C–1350°C) to form low-K, low-Ti tholeiitic magmas that formed the overlying cumulate peridotite–gabbro and basalt (PUB only) sequences of the ophiolites. This is inferred to have occurred in a fore-arc setting at the initiation of subduction. Later stages involved fluxing of the residual harzburgites with hydrous fluids and melts to form replacive dunites and enstatite dykes and interaction of the residual peridotites in the overlying mantle wedge with high-temperature hydrous melts from the subducting slab to generate the extremely refractory harzburgites. This latter stage can be linked to the eruption of low-Ca boninites at Cape Vogel, and other arc-related volcanics, in a nascent oceanic island arc. Both ophiolites were emplaced shortly after when the embryonic oceanic island arc collided with the Australian continent.

Funder

CSIRO Mineral Resources Discovery Internship under IGA

Patricia Anne Cavell Graduate Award in Earth Sciences

NSERC CREATE grant

Canada Excellence Research Chair

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3