Highly Oxidising Conditions in Volatile-Rich El Hierro Magmas: Implications for Ocean Island Magmatism

Author:

Taracsák Zoltán1,Longpré Marc-Antoine23,Tartèse Romain1,Burgess Ray1,Edmonds Marie4,Hartley Margaret E1

Affiliation:

1. Department of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK

2. School of Earth and Environmental Sciences, Queens College, City University of New York, Flushing, NY 11367, USA

3. Earth and Environmental Sciences, The Graduate Center, City University of New York, New York, NY 10016, USA

4. Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK

Abstract

Abstract Recent studies investigating magmatic volatile contents indicate widespread enrichment of carbon, sulfur, and halogens in ocean island basalts (OIBs). At El Hierro in the Western Canary Islands, magmas with exceptionally high CO2 and S contents have been erupting throughout the Holocene. High S content of up to 5200 ppm requires an oxidised mantle source, but estimates of initial magmatic oxygen fugacity (fO2) are sparse. Here, we present estimates of fO2 and magmatic temperature for El Hierro together with a global mantle potential temperature dataset to evaluate redox and temperature conditions in the early stages of melt evolution for volatile-rich OIBs. Oxygen fugacities calculated using vanadium partitioning between melt inclusions (MIs) and their olivine hosts are >FMQ + 2.9 (2.9 log10 units above the fayalite-magnetite-quartz buffer), indicating that El Hierro magmas are highly oxidised. MI and matrix glass sulfur speciation data record fO2 between FMQ-1 to FMQ + 2; these values strongly depend on the position of the S2− to S6+ transition relative to the FMQ buffer. Nonetheless, glass sulfur speciation data record lower oxygen fugacity than V partitioning data, indicating MIs were able to maintain Fe3+/ΣFe and S6+/ΣS equilibrium with the surrounding melt during their evolution. The high fO2 of El Hierro magmas is coupled with an average mantle potential temperature estimate of 1443 ± 66°C (1σ, n = 17) for the broader Canary Islands, which is slightly higher than the average potential temperature estimated for adjacent mid-ocean ridge segments (1427 ± 33°C, 1σ, n = 474), albeit the two values are well within error. We find that ~98% of Canary Island rock compositions are not suitable for calculation of mantle potential temperatures using currently available methods. This is caused by the presence of substantial pyroxenite and volatile-enriched peridotite mantle domains under the Canary Islands. A wider compositional calibration of various petrological models is necessary to precisely determine mantle potential temperatures for volatile-rich alkali basalts. Our high oxygen fugacity estimates for El Hierro magmas reflect the fertile, fusible, and volatile-enriched nature of the mantle source beneath the Western Canary Islands.

Funder

STFC

University of Manchester

STFC Ernest Rutherford Fellowship

NERC studentship

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3