Open-system Evolution of a Crustal-scale Magma Column, Klamath Mountains, California

Author:

Barnes Calvin G1ORCID,Coint Nolwenn2ORCID,Barnes Melanie A1,Chamberlain Kevin R3,Cottle John M4,Rämö O Tapani5,Strickland Ariel6,Valley John W7

Affiliation:

1. Department of Geosciences, Texas Tech University, Lubbock, TX 79409-1053, USA

2. Norwegian Geological Survey, Trondheim 7491, Norway

3. Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071, USA

4. Department of Earth Science, University of California, Santa Barbara, Santa Barbara, CA 93106-9630, USA

5. Department of Geosciences and Geography, University of Helsinki, Helsinki FI-00014, Finland

6. Department of Geology, Lone Star College System, The Woodlands, TX 77381, USA

7. Department of Geoscience, University of Wisconsin, Madison, WI 53706-1692, USA

Abstract

Abstract This study addresses the question of how and where arc magmas obtain their chemical and isotopic characteristics. The Wooley Creek batholith and Slinkard pluton are a tilted, mid- to upper-crustal part of a vertically extensive, late-Jurassic, arc-related magmatic system in the Klamath Mountains, northern California. The main stage of the system is divided into an older lower zone (c. 159 Ma) emplaced as multiple sheet-like bodies, a younger upper zone (c. 158–156 Ma), which is gradationally zoned upward from mafic tonalite to granite, and a complex central zone, which represents the transition between the lower and upper zones. Xenoliths are common and locally abundant in the lower and central zones and preserve a ghost stratigraphy of the three host terranes. Bulk-rock Nd isotope data along with ages and Hf and oxygen isotope data on zircons were used to assess the location and timing of differentiation and assimilation. Xenoliths display a wide range of εNd (whole-rock) and εHf (zircon), ranges that correlate with rocks in the host terranes. Among individual pluton samples, zircon Hf and oxygen isotope data display ranges too large to represent uniform magma compositions, and very few data are consistent with uncontaminated mantle-derived magma. In addition, zoning of Zr and Hf in augite and hornblende indicates that zircon crystallized at temperatures near or below 800 °C; these temperatures are lower than emplacement temperatures. Therefore, the diversity of zircon isotope compositions reflects in situ crystallization from heterogeneous magmas. On the basis of these and published data, the system is interpreted to reflect initial MASH-zone differentiation, which resulted in elevated δ18O and lowered εHf in the magmas prior to zircon crystallization. Further differentiation, and particularly assimilation–fractional crystallization, occurred at the level of emplacement on a piecemeal (local) basis as individual magma batches interacted with partial melts from host-rock xenoliths. This piecemeal assimilation was accompanied by zircon crystallization, resulting in the heterogeneous isotopic signatures. Magmatism ended with late-stage emplacement of isotopically evolved granitic magmas (c. 156 Ma) whose compositions primarily reflect reworking of the deep-crustal MASH environment.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3