The Age of Granulite-Facies Metamorphism in the Ivrea–Verbano Zone (NW Italy) Determined Through In Situ U–Pb Dating of Garnet

Author:

Bartoli Omar1,Millonig Leo J23,Carvalho Bruna B1,Marschall Horst R23,Gerdes Axel23

Affiliation:

1. University of Padova Department of Geosciences, , Via Gradenigo 6, 35131 Padua , Italy

2. Goethe-University Frankfurt Department of Geosciences, , Altenhöferallee 1, 60438 Frankfurt am Main , Germany

3. Goethe-University Frankfurt Frankfurt Isotope and Element Research Center (FIERCE), , Altenhöferallee 1, 60438 Frankfurt am Main , Germany

Abstract

Abstract Rates of melt production, extraction and crystallization, as well as scales of melt transfer and interaction with their residuum change continuously in migmatite and granulite, affecting the behavior of monazite and zircon as time capsules. Therefore, accessory mineral chronometers may be ambiguous and incomplete in providing an overview of the temperature–time evolution of high-grade metamorphic rocks. In this study, we applied the novel technique of in situ U–Pb dating of garnet to the archetypal lower continental crust of the Ivrea–Verbano Zone (IVZ), NW Italy. In the IVZ, the temporal relationship between granulite-facies metamorphism and mafic underplating has long been debated, because of the interplay between tectonic, magmatic, metamorphic and metasomatic processes over a period of more than a hundred million years. Garnet from mafic and pelitic granulites yielded U–Pb ages between 287.4 ± 4.9 Ma and 280.1 ± 12.4 Ma, overlapping within uncertainty the time proposed for the emplacement of the Mafic Complex (286–282 Ma). These results indicate that the thermal climax in granulitic rocks was caused by mafic underplating and concomitant asthenospheric upwelling, rather than being inherited from the post-Variscan Carboniferous evolution. Providing robust dating of garnet with as low as 4 ng/g U, this study demonstrates the strength of garnet petrochronology in resolving complex tectono-metamorphic histories of high-grade terranes. It also represents a further step forward towards establishing garnet as part of the in situ U–Pb geochronology repertoire.

Funder

Wilhelm and Else Heraeus Foundation and by the Deutsche Forschungsgemeinschaft

MIUR

University of Padua

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3