Automated quantification of wrist bone marrow oedema, pre- and post-treatment, in early rheumatoid arthritis

Author:

Yiu Chungwun1,Griffith James Francis1ORCID,Xiao Fan1,Shi Lin1,Zhou Bingjing1ORCID,Wu Su1ORCID,Tam Lai-Shan2ORCID

Affiliation:

1. Department of Imaging and Interventional Radiology, Chinese University of Hong Kong , Hong Kong, China

2. Rheumatology Division, Faculty of Medicine, Chinese University of Hong Kong , Hong Kong, China

Abstract

Abstract Objective Bone inflammation (osteitis) in early RA (ERA) manifests as bone marrow oedema (BME) and precedes the development of bone erosion. In this prospective, single-centre study, we developed an automated post-processing pipeline for quantifying the severity of wrist BME on T2-weighted fat-suppressed MRI. Methods A total of 80 ERA patients [mean age 54 years (s.d. 12), 62 females] were enrolled at baseline and 49 (40 females) after 1 year of treatment. For automated bone segmentation, a framework based on a convolutional neural network (nnU-Net) was trained and validated (5-fold cross-validation) for 15 wrist bone areas at baseline in 60 ERA patients. For BME quantification, BME was identified by Gaussian mixture model clustering and thresholding. BME proportion (%) and relative BME intensity within each bone area were compared with visual semi-quantitative assessment of the RA MRI score (RAMRIS). Results For automated wrist bone area segmentation, overall bone Sørensen–Dice similarity coefficient was 0.91 (s.d. 0.02) compared with ground truth manual segmentation. High correlation (Pearson correlation coefficient r = 0.928, P < 0.001) between visual RAMRIS BME and automated BME proportion assessment was found. The automated BME proportion decreased after treatment, correlating highly (r = 0.852, P < 0.001) with reduction in the RAMRIS BME score. Conclusion The automated model developed had an excellent segmentation performance and reliable quantification of both the proportion and relative intensity of wrist BME in ERA patients, providing a more objective and efficient alternative to RAMRIS BME scoring.

Funder

Health Services Research

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3