Exosomes of adult human fibroblasts cultured on 3D silk fibroin nonwovens intensely stimulate neoangiogenesis

Author:

Hu Peng12,Chiarini Anna1ORCID,Wu Jun13,Freddi Giuliano4,Nie Kaiyu2,Armato Ubaldo13,Prà Ilaria Dal13

Affiliation:

1. Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, Strada Le Grazie 8, I-37134, Verona, Venetia, Italy

2. Department of Burns & Plastic Surgery, The Affiliated Hospital of ZunYi Medical University, 149 Dalian Road, ZunYi City, 563003 Guizhou Province, China

3. Department of Burns and Plastic Surgery, Second People’s Hospital, University of Shenzhen, 3002 Sungang West Road, Futian District, Shenzhen, 518000, Guangdong Province, China

4. Silk Biomaterials S.r.l., Via Cavour 2, I-22074, Lomazzo, Lombardy, Italy

Abstract

Abstract Background Bombyx mori silk fibroin is a biomacromolecule that allows the assembly of scaffolds for tissue engineering and regeneration purposes due to its cellular adhesiveness, high biocompatibility and low immunogenicity. Earlier work showed that two types of 3D silk fibroin nonwovens (3D-SFnws) implanted into mouse subcutaneous tissue were promptly vascularized via undefined molecular mechanisms. The present study used nontumorigenic adult human dermal fibroblasts (HDFs) adhering to a third type of 3D-SFnws to assess whether HDFs release exosomes whose contents promote neoangiogenesis. Methods Electron microscopy imaging and physical tests defined the features of the novel carded/hydroentangled 3D-SFnws. HDFs were cultured on 3D-SFnws and polystyrene plates in an exosome-depleted medium. DNA amounts and D-glucose consumption revealed the growth and metabolic activities of HDFs on 3D-SFnws. CD9-expressing total exosome fractions were from conditioned media of 3D-SFnws and 2D polystyrene plates HDF cultures. Angiogenic growth factors (AGFs) in equal amounts of the two groups of exosomal proteins were analysed via double-antibody arrays. A tube formation assay using human dermal microvascular endothelial cells (HDMVECs) was used to evaluate the exosomes’ angiogenic power. Results The novel features of the 3D-SFnws met the biomechanical requirements typical of human soft tissues. By experimental day 15, 3D-SFnws-adhering HDFs had increased 4.5-fold in numbers and metabolized 5.4-fold more D-glucose than at day 3 in vitro. Compared to polystyrene-stuck HDFs, exosomes from 3D-SFnws-adhering HDFs carried significantly higher amounts of AGFs, such as interleukin (IL)-1α, IL-4 and IL-8; angiopoietin-1 and angiopoietin-2; angiopoietin-1 receptor (or Tie-2); growth-regulated oncogene (GRO)-α, GRO-β and GRO-γ; matrix metalloproteinase-1; tissue inhibitor metalloproteinase-1; and urokinase-type plasminogen activator surface receptor, but lesser amounts of anti-angiogenic tissue inhibitor metalloproteinase-2 and pro-inflammatory monocyte chemoattractant protein-1. At concentrations from 0.62 to 10 μg/ml, the exosomes from 3D-SFnws-cultured HDFs proved their angiogenic power by inducing HDMVECs to form significant amounts of tubes in vitro. Conclusions The structural and mechanical properties of carded/hydroentangled 3D-SFnws proved their suitability for tissue engineering and regeneration applications. Consistent with our hypothesis, 3D-SFnws-adhering HDFs released exosomes carrying several AGFs that induced HDMVECs to promptly assemble vascular tubes in vitro. Hence, we posit that once implanted in vivo, the 3D-SFnws/HDFs interactions could promote the vascularization and repair of extended skin wounds due to burns or other noxious agents in human and veterinary clinical settings.

Funder

Ministry of Italian University and Research

European Union’s Horizon 2020 Research and Innovation Program

Publisher

Oxford University Press (OUP)

Subject

Critical Care and Intensive Care Medicine,Dermatology,Biomedical Engineering,Emergency Medicine,Immunology and Allergy,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3