Neural grafts containing exosomes derived from Schwann cell-like cells promote peripheral nerve regeneration in rats

Author:

Hu Taotao12,Chang Shusen12,Qi Fang12,Zhang Zhonghui12,Chen Jiayin12,Jiang Lingli12,Wang Dali12,Deng Chengliang12,Nie Kaiyu12,Xu Guangchao12,Wei Zairong12

Affiliation:

1. Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University , No. 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003 , China

2. The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi medical University , No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, 563003 , China

Abstract

Abstract Background Schwann cell-like cells (SCLCs), differentiated from mesenchymal stem cells, have shown promising outcomes in the treatment of peripheral nerve injuries in preclinical studies. However, certain clinical obstacles limit their application. Hence, the primary aim of this study was to investigate the role of exosomes derived from SCLCs (SCLCs-exo) in peripheral nerve regeneration. Methods SCLCs were differentiated from human amniotic mesenchymal stem cells (hAMSCs) in vitro and validated by immunofluorescence, real-time quantitative PCR and western blot analysis. Exosomes derived from hAMSCs (hAMSCs-exo) and SCLCs were isolated by ultracentrifugation and validated by nanoparticle tracking analysis, WB analysis and electron microscopy. A prefabricated nerve graft was used to deliver hAMSCs-exo or SCLCs-exo in an injured sciatic nerve rat model. The effects of hAMSCs-exo or SCLCs-exo on rat peripheral nerve injury (PNI) regeneration were determined based on the recovery of neurological function and histomorphometric variation. The effects of hAMSCs-exo or SCLCs-exo on Schwann cells were also determined via cell proliferation and migration assessment. Results SCLCs significantly expressed the Schwann cell markers glial fibrillary acidic protein and S100. Compared to hAMSCs-exo, SCLCs-exo significantly enhanced motor function recovery, attenuated gastrocnemius muscle atrophy and facilitated axonal regrowth, myelin formation and angiogenesis in the rat model. Furthermore, hAMSCs-exo and SCLCs-exo were efficiently absorbed by Schwann cells. However, compared to hAMSCs-exo, SCLCs-exo significantly promoted the proliferation and migration of Schwann cells. SCLCs-exo also significantly upregulated the expression of a glial cell-derived neurotrophic factor, myelin positive regulators (SRY-box transcription factor 10, early growth response protein 2 and organic cation/carnitine transporter 6) and myelin proteins (myelin basic protein and myelin protein zero) in Schwann cells. Conclusions These findings suggest that SCLCs-exo can more efficiently promote PNI regeneration than hAMSCs-exo and are a potentially novel therapeutic approach for treating PNI.

Funder

Innovation Group Major Research Project of Guizhou Province Education Department

Science and Technology Support Project of Guizhou Province

Affiliated Hospital of Zunyi Medical University

National Nature Science Foundation of China

Collaborative Innovation Center of the Chinese Ministry of Education

Master Fund of Scientific Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Critical Care and Intensive Care Medicine,Dermatology,Biomedical Engineering,Emergency Medicine,Immunology and Allergy,Surgery

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3