Non-severe burn injury increases cancer incidence in mice and has long-term impacts on the activation and function of T cells

Author:

Barrett Lucy W123ORCID,Fear Vanessa S2,Foley Bree2,Audsley Katherine2,Barnes Samantha2,Newnes Hannah2,McDonnell Alison2,Wood Fiona M134,Fear Mark W34ORCID,Waithman Jason2

Affiliation:

1. Burn Injury Research Unit, School of Biomedical Sciences, University of Western Australia, Crawley, WA, 6009, Australia

2. Telethon Kids Institute, University of Western Australia, Northern Entrance, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, WA, 6009, Australia

3. Fiona Wood Foundation, Fiona Stanley Hospital, MNH (B), Main Hospital, CD 15, Level 4, Burns Unit, 102-118 Murdoch Drive, Murdoch, WA, 6150, Australia

4. Burns Service of Western Australia, WA Department of Health, Nedlands, WA, 6009, Australia

Abstract

Abstract Background Recent evidence suggests that burn patients are at increased risk of hospital admission for infection, mental health conditions, cardiovascular disease and cancer for many years after discharge for the burn injury itself. Burn injury has also been shown to induce sustained immune system dysfunction. This change to immune function may contribute to the increased risk of chronic disease observed. However, the mechanisms that disrupt long-term immune function in response to burn trauma, and their link to long-term morbidity, remain unknown. In this study we investigated changes to immune function after burn injury using a murine model of non-severe injury. Methods An established mouse model of non-severe burn injury (full thickness burn equivalent to 8% total body surface area) was used in combination with an orthotopic model of B16 melanoma to investigate the link between burns and cancer. Considering that CD8+ T cells are important drivers of effective tumour suppression in this model, we also investigated potential dysregulation of this immune population using mouse models of burn injury in combination with herpes simplex virus infection. Flow cytometry was used to detect and quantify cell populations of interest and changes in immune function. Results We demonstrate that 4 weeks after a non-severe burn injury, mice were significantly more susceptible to tumour development than controls using an orthotopic model of B16 melanoma. In addition, our results reveal that CD8+ T cell expansion, differentiation and memory potential is significantly impaired at 1 month post-burn. Conclusions Our data suggests that CD8+ T cell-mediated immunity may be dysfunctional for a sustained period after even non-severe burn injury. Further studies in patients to validate these findings may support clinical intervention to restore or protect immunity in patients after burn injury and reduce the increased risk of secondary morbidities observed.

Funder

Fiona Wood Foundation

Stan Perron Centre for Excellence for Childhood Burns

Perth Children’s Hospital Foundation

Publisher

Oxford University Press (OUP)

Subject

Critical Care and Intensive Care Medicine,Dermatology,Biomedical Engineering,Emergency Medicine,Immunology and Allergy,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3