Melatonin influences the biological characteristics of keloid fibroblasts through the Erk and Smad signalling pathways

Author:

Huang Shaobin123ORCID,Deng Wuguo3,Dong Yunxian1,Hu Zhicheng1,Zhang Yi4,Wang Peng1,Cao Xiaoling1,Chen Miao3,Cheng Pu1,Xu Hailin1,Zhu Wenkai5,Tang Bing1ORCID,Zhu Jiayuan1ORCID

Affiliation:

1. Department of Burn, First Affiliated Hospital of Sun Yat-sen University , Guangzhou 510080 , China

2. Department of Cosmetic and Plastic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University , Guangzhou 510655 , China

3. Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine , Guangzhou 510060 , China

4. Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University , Nantong 226001 , China

5. Department of Obstetrics and Gynecology, School of Medicine, Stanford University , Stanford, CA 94305 , United States

Abstract

AbstractBackgroundKeloids are abnormal fibrous hyperplasias that are difficult to treat. Melatonin can be used to inhibit the development of certain fibrotic diseases but has never been used to treat keloids. We aimed to discover the effects and mechanisms of melatonin in keloid fibroblasts (KFs).MethodsFlow cytometry, CCK-8 assays, western blotting, wound-healing assays, transwell assays, collagen gel contraction assays and immunofluorescence assays were applied to demonstrate the effects and mechanisms of melatonin in fibroblasts derived from normal skin, hypertrophic scars and keloids. The therapeutic potential of the combination of melatonin and 5-fluorouracil (5-FU) was investigated in KFs.ResultsMelatonin significantly promoted cell apoptosis and inhibited cell proliferation, migration and invasion, contractile capability and collagen production in KFs. Further mechanistic studies demonstrated that melatonin could inhibit the cAMP/PKA/Erk and Smad pathways through the membrane receptor MT2 to alter the biological characteristics of KFs. Moreover, the combination of melatonin and 5-FU remarkably promoted cell apoptosis and inhibited cell migration and invasion, contractile capability and collagen production in KFs. Furthermore, 5-FU suppressed the phosphorylation of Akt, mTOR, Smad3 and Erk, and melatonin in combination with 5-FU markedly suppressed the activation of the Akt, Erk and Smad pathways.ConclusionsCollectively, melatonin may inhibit the Erk and Smad pathways through the membrane receptor MT2 to alter the cell functions of KFs, while combination with 5-FU could exert even more inhibitory effects in KFs through simultaneous suppression of multiple signalling pathways.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Critical Care and Intensive Care Medicine,Dermatology,Biomedical Engineering,Emergency Medicine,Immunology and Allergy,Surgery

Reference53 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3