Curcumin preconditioning enhances the efficacy of adipose-derived mesenchymal stem cells to accelerate healing of burn wounds

Author:

Azam Maryam1,Ghufran Hafiz1,Butt Hira1,Mehmood Azra1,Ashfaq Ramla1,Ilyas Asad M1,Ahmad Muhammad R1,Riazuddin Sheikh12

Affiliation:

1. National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan

2. Jinnah Burn and Reconstructive Surgery Centre, Maulana Shaukat Ali Rd, Quaid-i-Azam Campus, Lahore, Pakistan

Abstract

Abstract Background Following recent findings from our group that curcumin preconditioning augments the therapeutic efficacy of adipose-derived stem cells in the healing of diabetic wounds in rats, we aimed to investigate the regenerative effects of curcumin preconditioned adipose-derived mesenchymal stem cells (ASCs) for better recovery of acid inflicted burns in this study. Methods ASCs were preconditioned with 5 μM curcumin for 24 hours and assessed for proliferation, migration, paracrine release potential and gene expression comparative to naïve ASCs. Subsequently, the healing capacity of curcumin preconditioned ASCs (Cur-ASCs) versus naïve ASCs was examined using acidic wounds in rats. For this, acid inflicted burns of 20 mm in diameter were made on the back of male Wistar rats. Then, 2 × 106 cells of Cur-ASCs and naïve ASCs were intradermally injected in the wound periphery (n = 6) for comparison with an untreated saline control. Post-transplantation, wounds were macroscopically analysed and photographed to evaluate the percentage of wound closure and period of re-epithelization. Healed wound biopsies were excised and used for histological evaluation and expression analysis of wound healing markers at molecular level by quantitative PCR and western blotting. Results We found that Cur-ASCs exhibited greater proliferation, migration and paracrine potential in vitro. Further, Cur-ASCs showed more effective recovery than naïve ASCs as exhibited by gross morphology, faster wound closure and earlier re-epithelialization. Masson’s trichrome and hematoxylin and eosin staining demonstrated the improved architecture of the healing burns, as evidenced by reduced infiltration of inflammatory cells, compact collagen and marked granulation in Cur-ASC treated rats. Corroborating these findings, molecular assessment showed significantly reduced expressions of pro-inflammatory factors (interleukin-1 beta, interleukin-6, tumor necrosis factor alpha) a with striking upsurge of an oxidative marker (superoxide dismutase 1), pro-angiogenic factors (vascular endothelial growth factor, hepatocyte growth factor, hypoxia-inducible factor-1 alpha) and collagen markers (transforming growth factor beta 1, fibroblast growth factor-2, collagen type 1 alpha 1), verifying that Cur-ASCs modulate the regulation of pro-inflammatory and healing markers at burn sites. Conclusions Treatment with Cur-ASCs resulted in faster re-epithelization of acid inflicted burns compared to the treatment with naïve ASCs. Based on observed findings, we suggest the transplantation of Cur-ASCs is a valuable therapy for the potent clinical management of acidic burns.

Funder

Higher Education Commission of Pakistan

Publisher

Oxford University Press (OUP)

Subject

Critical Care and Intensive Care Medicine,Dermatology,Biomedical Engineering,Emergency Medicine,Immunology and Allergy,Surgery

Reference66 articles.

1. Burns in the third world: an unmet need;Stokes;Ann Burns Fire Disasters,2017

2. Chemical burns–an historical comparison and review of the literature;Hardwicke;Burns,2012

3. Management of acid burns: experience from Bangladesh;Das;Burns,2015

4. Concise review: tissue-engineered skin and nerve regeneration in burn treatment;Blais;Stem Cells Transl Med,2013

5. Pakistan moves to tackle acid violence;Solberg;The Lancet,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3