Affiliation:
1. National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
2. Jinnah Burn and Reconstructive Surgery Centre, Maulana Shaukat Ali Rd, Quaid-i-Azam Campus, Lahore, Pakistan
Abstract
Abstract
Background
Following recent findings from our group that curcumin preconditioning augments the therapeutic efficacy of adipose-derived stem cells in the healing of diabetic wounds in rats, we aimed to investigate the regenerative effects of curcumin preconditioned adipose-derived mesenchymal stem cells (ASCs) for better recovery of acid inflicted burns in this study.
Methods
ASCs were preconditioned with 5 μM curcumin for 24 hours and assessed for proliferation, migration, paracrine release potential and gene expression comparative to naïve ASCs. Subsequently, the healing capacity of curcumin preconditioned ASCs (Cur-ASCs) versus naïve ASCs was examined using acidic wounds in rats. For this, acid inflicted burns of 20 mm in diameter were made on the back of male Wistar rats. Then, 2 × 106 cells of Cur-ASCs and naïve ASCs were intradermally injected in the wound periphery (n = 6) for comparison with an untreated saline control. Post-transplantation, wounds were macroscopically analysed and photographed to evaluate the percentage of wound closure and period of re-epithelization. Healed wound biopsies were excised and used for histological evaluation and expression analysis of wound healing markers at molecular level by quantitative PCR and western blotting.
Results
We found that Cur-ASCs exhibited greater proliferation, migration and paracrine potential in vitro. Further, Cur-ASCs showed more effective recovery than naïve ASCs as exhibited by gross morphology, faster wound closure and earlier re-epithelialization. Masson’s trichrome and hematoxylin and eosin staining demonstrated the improved architecture of the healing burns, as evidenced by reduced infiltration of inflammatory cells, compact collagen and marked granulation in Cur-ASC treated rats. Corroborating these findings, molecular assessment showed significantly reduced expressions of pro-inflammatory factors (interleukin-1 beta, interleukin-6, tumor necrosis factor alpha) a with striking upsurge of an oxidative marker (superoxide dismutase 1), pro-angiogenic factors (vascular endothelial growth factor, hepatocyte growth factor, hypoxia-inducible factor-1 alpha) and collagen markers (transforming growth factor beta 1, fibroblast growth factor-2, collagen type 1 alpha 1), verifying that Cur-ASCs modulate the regulation of pro-inflammatory and healing markers at burn sites.
Conclusions
Treatment with Cur-ASCs resulted in faster re-epithelization of acid inflicted burns compared to the treatment with naïve ASCs. Based on observed findings, we suggest the transplantation of Cur-ASCs is a valuable therapy for the potent clinical management of acidic burns.
Funder
Higher Education Commission of Pakistan
Publisher
Oxford University Press (OUP)
Subject
Critical Care and Intensive Care Medicine,Dermatology,Biomedical Engineering,Emergency Medicine,Immunology and Allergy,Surgery
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献