CD9 negatively regulates collective electrotaxis of the epidermal monolayer by controlling and coordinating the polarization of leader cells

Author:

Liu Xiaoqiang12ORCID,Yang Jinrui12,Kong Meng12,Jiang Min12,Liu Luojia12,Zhang Jinghong12,Chen Ying12,Chen Xu12,Zhang Ze12,Wu Chao12,Jiang Xupin12,Liu Jie12,Zhang Jiaping12

Affiliation:

1. Department of Plastic Surgery , State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, , 29 Gaotan Yan Street, Shapingba, 400038 Chongqing , China

2. Third Military Medical University (Army Medical University) , State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, , 29 Gaotan Yan Street, Shapingba, 400038 Chongqing , China

Abstract

Abstract Background Endogenous electric fields (EFs) play an essential role in guiding the coordinated collective migration of epidermal cells to the wound centre during wound healing. Although polarization of leadercells is essential for collective migration, the signal mechanisms responsible for the EF-induced polarization of leader cells under electrotactic collective migration remain unclear. This study aims to determine how the leader cells are polarized and coordinated during EF-guided collective migration of epidermal cell sheets. Methods Collective migration of the human epidermal monolayer (human immortalized keratinocytes HaCaT) under EFs was observed via time-lapse microscopy. The involvement of tetraspanin-29 (CD9) in EF-induced fibrous actin (F-actin) polarization of leader cells as well as electrotactic migration of the epidermal monolayer was evaluated by genetic manipulation. Blocking, rescue and co-culture experiments were conducted to explore the downstream signalling of CD9. Results EFs guided the coordinated collective migration of the epithelial monolayer to the anode, with dynamic formation of pseudopodia in leader cells at the front edge of the monolayer along the direction of migration. F-actin polarization, as expected, played an essential role in pseudopod formation in leader cells under EFs. By confocal microscopy, we found that CD9 was colocalized with F-actin on the cell surface and was particularly downregulated in leader cells by EFs. Interestingly, genetic overexpression of CD9 abolished EF-induced F-actin polarization in leader cells as well as collective migration in the epidermal monolayer. Mechanistically, CD9 determined the polarization of F-actin in leader cells by downregulating a disintegrin and metalloprotease 17/heparin-binding epidermal growth factor-like growth factor/epidermal growth factor receptor (ADAM17/HB-EGF/EGFR) signalling. The abolished polarization of leader cells due to CD9 overexpression could be restored in a co-culture monolayer where normal cells and CD9-overexpressing cells were mixed; however, this restoration was eliminated again by the addition of the HB-EGF-neutralizing antibody. Conclusion CD9 functions as a key regulator in the EF-guided collective migration of the epidermal monolayer by controlling and coordinating the polarization of leader cells through ADAM17/HB-EGF/EGFR signalling.

Funder

National Natural Science Foundation of China

Scientific Research Project of Chongqing

Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital

Publisher

Oxford University Press (OUP)

Subject

Critical Care and Intensive Care Medicine,Dermatology,Biomedical Engineering,Emergency Medicine,Immunology and Allergy,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3