P311 promotes type II transforming growth factor-β receptor mediated fibroblast activation and granulation tissue formation in wound healing

Author:

Wang Jue12ORCID,Shang Ruoyu12,Yang Jiacai12,Liu Zhihui12,Chen Yunxia12,Chen Cheng12ORCID,Zheng Wenxia3,Tang Yuanyang14,Zhang Xiaorong12,Hu Xiaohong12,Huang Yong12,Shen Han-Ming5ORCID,Luo Gaoxing12,He Weifeng12ORCID

Affiliation:

1. State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University) , Chongqing 400038 , China

2. Chongqing Key Laboratory for Disease Proteomics , Chongqing 400038 , China

3. Department of Technical Support, Chengdu Zhijing Technology Co., Ltd , Chengdu 610041 , China

4. Academy of Biological Engineering, Chongqing University , Chongqing 400038 , China

5. Faculty of Health Sciences, University of Macau , Macau , China

Abstract

Abstract Background P311, a highly conserved 8 kDa intracellular protein, has recently been reported to play an important role in aggravating hypertrophic scaring by promoting the differentiation and secretion of fibroblasts. Nevertheless, how P311 regulates the differentiation and function of fibroblasts to affect granulation tissue formation remains unclear. In this work, we studied the underlying mechanisms via which P311 affects fibroblasts and promotes acute skin wound repair. Methods To explore the role of P311, both in vitro and in vivo wound-healing models were used. Full-thickness skin excisional wounds were made in wild-type and P311−/− C57 adult mice. Wound healing rate, re-epithelialization, granulation tissue formation and collagen deposition were measured at days 3, 6 and 9 after skin injury. The biological phenotypes of fibroblasts, the expression of target proteins and relevant signaling pathways were examined both in vitro and in vivo. Results P311 could promote the proliferation and differentiation of fibroblasts, enhance the ability of myofibroblasts to secrete extracellular matrix and promote cell contraction, and then facilitate the formation of granulation tissue and eventually accelerate skin wound closure. Importantly, we discovered that P311 acts via up-regulating the expression of type II transforming growth factor-β receptor (TGF-βRII) in fibroblasts and promoting the activation of the TGF-βRII-Smad signaling pathway. Mechanistically, the mammalian target of rapamycin signaling pathway is closely implicated in the regulation of the TGF-βRII-Smad pathway in fibroblasts mediated by P311. Conclusions P311 plays a critical role in activation of the TGF-βRII-Smad pathway to promote fibroblast proliferation and differentiation as well as granulation tissue formation in the process of skin wound repair.

Funder

Special Project for Enhancing Science and Technology Innovation Ability (frontier exploration) of Army Military Medical University

Military Medical Science and Technology Youth Training Program of Army Military Medical University

National Natural Sciences Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Critical Care and Intensive Care Medicine,Dermatology,Biomedical Engineering,Emergency Medicine,Immunology and Allergy,Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3