Can a digital slide scanner and viewing technique assist the visual scoring for the cytokinesis-block micronucleus cytome assay?

Author:

Jaunay Emma L1ORCID,Dhillon Varinderpal S1,Semple Susan J2,Simpson Bradley S1,Deo Permal1ORCID,Fenech Michael13

Affiliation:

1. Health and Biomedical Innovation, University of South Australia, Adelaide SA, Australia

2. Quality Use of Medicines and Pharmacy Research Centre, UniSA Clinical and Health Sciences, University of South Australia, Adelaide SA, Australia

3. Genome Health Foundation, North Brighton, Australia

Abstract

Abstract The cytokinesis-block micronucleus cytome (CBMNcyt) assay is a comprehensive method to measure DNA damage, cytostasis and cytotoxicity caused by nutritional, radiation and chemical factors. A slide imaging technique has been identified as a new method to assist with the visual scoring of cells for the CBMNcyt assay. A NanoZoomer S60 Digital Pathology slide scanner was used to view WIL2-NS cells treated with hydrogen peroxide (H2O2) and measure CBMNcyt assay biomarkers using a high-definition desktop computer screen. The H2O2-treated WIL2-NS cells were also scored visually using a standard light microscope, and the two visual scoring methods were compared. Good agreement was found between the scoring methods for all DNA damage indices (micronuclei, nucleoplasmic bridges and nuclear buds) and nuclear division index with correlation R values ranging from 0.438 to 0.789, P < 0.05. Apoptotic and necrotic cell frequency was lower for the NanoZoomer scoring method, but necrotic frequency correlated well with the direct visual microscope method (R = 0.703, P < 0.0001). Considerable advantages of the NanoZoomer scoring method compared to direct visual microscopy includes reduced scoring time, improved ergonomics and a reduction in scorer fatigue. This study indicates that a digital slide scanning and viewing technique may assist with visual scoring for the CBMNcyt assay and provides similar results to conventional direct visual scoring.

Funder

Australian Institute of Health and Welfare, Australian Government

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Genetics(clinical),Toxicology,Genetics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3