Comparative analysis of Ag NPs functionalized with olive leaf extract and oleuropein and toxicity in human trophoblast cells and peripheral blood lymphocytes

Author:

Pirković Andrea1,Lazić Vesna2,Spremo-Potparević Biljana3,Živković Lada3,Topalović Dijana3,Kuzman Sanja2,Antić-Stanković Jelena4,Božić Dragana4,Jovanović Krivokuća Milica1,Nedeljković Jovan M2

Affiliation:

1. Department for Biology of Reproduction, University of Belgrade, INEP Institute for Application of Nuclear Energy , Belgrade , Serbia

2. Centre of Excellence for Photoconversion, Vinča Institute of Nuclear Sciences —National Institute of the Republic of Serbia, University of Belgrade , Belgrade , Serbia

3. Department of Pathobiology, Faculty of Pharmacy, University of Belgrade , Belgrade , Serbia

4. Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade , Belgrade , Serbia

Abstract

Abstract Dry olive leaf extract (DOLE) and its active component oleuropein (OLE) were applied as reducing and stabilizing agents to prepare colloidal 20–25 nm silver nanoparticles (Ag NPs). The Ag NPs were characterized using transmission electron microscopy, X-ray diffraction analysis, and absorption spectroscopy. The cytotoxic actions of coated Ag NPs, and their inorganic and organic components, were examined against trophoblast cells and human peripheral blood lymphocytes (PBLs), Gram-positive, Gram-negative bacteria, and yeast. The genotoxic potential was evaluated in PBLs in vitro with the comet assay. Ag/DOLE and Ag/OLE induced cytotoxic effects in both types of cells after 24 h exposure when silver concentrations were 0.025–0.2 mM. However, the most pronounced cytotoxicity exhibits Ag/OLE. Both colloids also caused reduced ROS production in both cell types at 0.1 mM and 0.2 mM, while bare Ag NPs did not alter ROS levels at any of the conditions. Functionalized Ag/DOLE and Ag/OLE did not show genotoxic effects in PBLs, while bare AgNPs increased DNA damage significantly only at 0.2 mM. Regarding the antimicrobial effects, the Ag/OLE had MIC values for all evaluated microorganisms from 0.0625 to less than 0.0312 mM. Also, the antimicrobial effect of Ag/DOLE was significantly higher on Gram-negative bacteria and yeast than on Gram-positive bacteria. Obtained results indicate that Ag/OLE induced the most pronounced biological effects, beneficial for its application as an antimicrobial agent, but with potential risks from exposure to high concentrations that could induce cytotoxicity in healthy human cells.

Funder

Ministry of Education, Science and Technological Development

University of Belgrade-Institute

University of Belgrade-Faculty of Pharmacy

University of Belgrade-Vinča Institute of Nuclear Sciences

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Genetics (clinical),Toxicology,Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3