Targeting HSP90 attenuates angiotensin II-induced adventitial remodelling via suppression of mitochondrial fission

Author:

Huang Gaojian12ORCID,Cong Zhilei3,Wang Xiaoyan4,Yuan Yanggang5,Xu Renjie1ORCID,Lu Zhaoyang16,Wang Xuelian16,Qi Jia14ORCID

Affiliation:

1. Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China

2. Department of Hypertension and Shanghai Institute of Hypertension, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, China

3. Department of Emergency, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China

4. Department of Cardiology, Affiliated Hospital of Jiangnan University, Wuxi 214000, China

5. Department of Nephrology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China

6. Department of Gerontology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China

Abstract

Abstract Aims Adventitial remodelling presenting with the phenotypic switch of adventitial fibroblasts (AFs) to myofibroblasts is reportedly involved in the evolution of several vascular diseases, including hypertension. In our previous study, we reported that heat shock protein 90 (HSP90) inhibition by 17-dime-thylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) markedly attenuates angiotensin II (AngII)-induced abdominal aortic aneurysm formation by simultaneously inhibiting several key signalling and transcriptional pathways in vascular smooth muscle cells; however, little is known about its role on AFs. Given that the AF phenotypic switch is likely to be associated with mitochondrial function and calcineurin (CN), a client protein of HSP90 that mediates mitochondrial fission and function, the aim of this study was to investigate whether mitochondrial fission contributes to phenotypic switch of AF, and if it does, we further aimed to determine whether HSP90 inhibition attenuates mitochondrial fission and subsequently suppresses AF transformation and adventitial remodelling in AngII-induced hypertensive mice. Methods and results In primary mouse AFs, we found that CN-dependent dephosphorylation of Drp1 induced mitochondrial fission and regulated mitochondrial reactive oxygen species production, which stimulated AF proliferation, migration, and phenotypic switching in AngII-treated AFs. Moreover, AngII was found to increase the binding of HSP90 and CN in AFs, while HSP90 inhibition significantly reversed AngII-induced mitochondrial fission and AF phenotypic switching by modulating the CN-dependent dephosphorylation of Drp1. Consistent with the effects in AFs, in an animal model of AngII-induced adventitial remodelling, 17-DMAG markedly reduced mitochondrial fission, AF differentiation, vessel wall thickening, and fibrosis in the aortic adventitia, which were mediated by CN/Drp1 signalling pathways. Conclusions Our study suggests that CN/Drp1-dependent mitochondrial fission may be essential for understanding adventitial remodelling in hypertension and that HSP90 inhibition may serve as a novel approach for the treatment of adventitial remodelling-related diseases.

Funder

Chinese Natural Science Foundation

Natural Science Foundation of Shanghai

Shanghai Municipal Commission of Health and Family Planning

Shanghai ‘Rising Stars of Medical Talent’ Youth Development Program, China Postdoctoral Science Foundation

China Scholarship Council

Clinic Research Center of Jiangsu Province

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3