Targeting the highly abundant circular RNA circSlc8a1 in cardiomyocytes attenuates pressure overload induced hypertrophy

Author:

Lim Tingsen Benson12,Aliwarga Edita12,Luu Tuan Danh Anh1,Li Yiqing Peter1,Ng Shi Ling12ORCID,Annadoray Lavenniah12ORCID,Sian Stephanie3,Ackers-Johnson Matthew Andrew1,Foo Roger Sik-Yin12ORCID

Affiliation:

1. Cardiovascular Research Institute, National University Health Systems, MD6 Centre for Translational Medicine, 14 Medical Drive, Singapore, Singapore

2. Genome Institute of Singapore, Genome, 60 Biopolis Street, Singapore, Singapore

3. Cancer Science Institute, National University Health Systems, MD6 Centre for Translational Medicine, 14 Medical Drive, Singapore, Singapore

Abstract

AbstractAimsWe and others have previously described the expression landscape of circular RNA (circRNA) in mouse and human hearts. However, the functional relevance of many of these abundantly expressed cardiomyocyte circRNA remains to be fully explored. Among the most abundant circRNA, one stems from the sodium-calcium exchanger gene, Slc8a1, exon 2 locus. Because of its very high abundance in cardiomyocytes we investigated the possible role of circSlc8a1 in the heart.Methods and resultsWe performed a miRNA screen using an array of 752 miRNAs with RNA recovered from a pull-down of endogenous cardiomyocyte circSlc8a1. MicroRNA-133a (miR-133a), with a prior well-recognized role in cardiac hypertrophy, was highly enriched in the fraction of circSlc8a1 pull-down (adjusted P-value < 0.001). We, therefore, followed-up validation of the functional interaction between circSlc8a1 and miR-133 using luciferase assays and reciprocal pull-down assays. In vivo, AAV9-mediated RNAi knockdown of circSlc8a1 attenuates cardiac hypertrophy from pressure-overload, whereas forced cardiomyocyte specific overexpression of circSlc8a1 resulted in heart failure. Molecular analyses showed targets of miR-133a including serum response factor (Srf), connective tissue growth factor (Ctgf), adrenoceptor beta 1 (Adrb1), and adenylate cyclase 6 (Adcy6) to be regulated by circSlc8a1-directed intervention of knockdown and overexpression.ConclusionIn summary, circSlc8a1 can function as an endogenous sponge for miR-133a in cardiomyocytes. We propose that circSlc8a1 may serve as a novel therapeutic target for cardiac hypertrophy.

Funder

Singapore National Medical Research Council

Biomedical Research Council

Translational Clinical Research

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3