The effect of a dynamic lighting schedule on neurobehavioral performance during a 45-day simulated space mission

Author:

Grant Leilah K12ORCID,Kent Brianne A12,Rahman Shadab A12ORCID,St. Hilaire Melissa A12,Kirkley Crystal L3,Gregory Kevin B3,Clark Toni4,Hanifin John P5,Barger Laura K12ORCID,Czeisler Charles A12,Brainard George C5,Lockley Steven W12,Flynn-Evans Erin E3

Affiliation:

1. Division of Sleep and Circadian Disorders, Brigham & Women’s Hospital , Boston, MA , USA

2. Division of Sleep Medicine, Harvard Medical School , Boston, MA , USA

3. Fatigue Countermeasures Laboratory, Human Systems Integration Division, NASA Ames Research Center , Moffett Field, CA , USA

4. Johnson Space Center , Houston, TX , USA

5. Department of Neurology, Thomas Jefferson University , Philadelphia, PA , USA

Abstract

Abstract Study Objectives We previously reported that during a 45-day simulated space mission, a dynamic lighting schedule (DLS) improved circadian phase alignment and performance assessed once on selected days. This study aimed to evaluate how DLS affected performance on a 5-minute psychomotor vigilance task (PVT) administered multiple times per day on selected days. Methods Sixteen crewmembers (37.4 ± 6.7 years; 5F) underwent six cycles of 2 × 8-hour/night followed by 5 × 5-hour/night sleep opportunities. During the DLS (n = 8), daytime white light exposure was blue-enriched (~6000 K; Level 1: 1079, Level 2: 76 melanopic equivalent daytime illuminance (melEDI) lux) and blue-depleted (~3000–4000 K; L1: 21, L2: 2 melEDI lux) 3 hours before bed. In the standard lighting schedule (SLS; n = 8), lighting remained constant (~4500K; L1: 284, L2 62 melEDI lux). Effects of lighting condition (DLS/SLS), sleep condition (5/8 hours), time into mission, and their interactions, and time awake on PVT performance were analyzed using generalized linear mixed models. Results The DLS was associated with fewer attentional lapses (reaction time [RT] > 500 milliseconds) compared to SLS. Lapses, mean RT, and 10% fastest/slowest RTs were worse following 5 compared to 8 hours of sleep but not between lighting conditions. There was an effect of time into mission on RTs, likely due to sleep loss. Overall performance differed by time of day, with longer RTs at the beginning and end of the day. There were more lapses and slower RTs in the afternoon in the SLS compared to the DLS condition. Conclusions Future missions should incorporate DLS to enhance circadian alignment and performance. This paper is part of the Sleep and Circadian Rhythms: Management of Fatigue in Occupational Settings Collection.

Publisher

Oxford University Press (OUP)

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3