Therapeutic immunoglobulin A antibody for dysbiosis-related diseases

Author:

Shinkura Reiko123ORCID

Affiliation:

1. Laboratory of Immunology and Infection Control, Institute for Quantitative Biosciences, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan

2. Collaborative Research Institute for Innovative Microbiology, University of Tokyo, 1‑1‑1 Yayoi, Bunkyo‑ku, Tokyo 113‑0032, Japan

3. Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan

Abstract

Abstract Dysbiosis is alterations in the microbial composition compared with a healthy microbiota and often features a reduction in gut microbial diversity and a change in microbial taxa. Dysbiosis, especially in the gut, has also been proposed to play a crucial role in the pathogenesis of a wide variety of diseases, including inflammatory bowel disease, colorectal cancer, cardiovascular disease, obesity, diabetes and multiple sclerosis. A body of evidence has shown that intestinal polymeric immunoglobulin A (IgA) antibodies are important to regulate the gut microbiota as well as to exclude pathogenic bacteria or viral infection such as influenza and SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) at mucosal sites. Since the 1970s, trials for oral administration of therapeutic IgA or IgG have been performed mainly to treat infectious enteritis caused by pathogenic Escherichia coli or Clostridium difficile. However, few of them have been successfully developed for clinical application up to now. In addition to the protective function against intestinal pathogens, IgA is well known to modulate the gut commensal microbiota leading to symbiosis. Nevertheless, the development of therapeutic IgA drugs to treat dysbiosis is not progressing. In this review, the advantages of therapeutic IgA antibodies and the problems for their development will be discussed.

Funder

Japan Agency for Medical Research and Development

Publisher

Oxford University Press (OUP)

Subject

Immunology,General Medicine,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Therapeutic targeting of gut‐originating regulatory B cells in neuroinflammatory diseases;European Journal of Immunology;2023-10-09

2. Therapeutic Options for Diarrheagenic Escherichia coli;Trending Topics in Escherichia coli Research;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3